Gauge orbit types for theories with gauge group SUn:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | Undetermined |
Veröffentlicht: |
2000
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Leipzig, Univ., Diss., 2000 |
Beschreibung: | III, 149, 7 S. |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV013261040 | ||
003 | DE-604 | ||
005 | 20020211 | ||
007 | t | ||
008 | 000720s2000 m||| 00||| und d | ||
016 | 7 | |a 958926816 |2 DE-101 | |
035 | |a (OCoLC)632773954 | ||
035 | |a (DE-599)BVBBV013261040 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | |a und | ||
049 | |a DE-91 |a DE-355 | ||
084 | |a PHY 417d |2 stub | ||
084 | |a MAT 554d |2 stub | ||
100 | 1 | |a Schmidt, Matthias |e Verfasser |4 aut | |
245 | 1 | 0 | |a Gauge orbit types for theories with gauge group SUn |c vorgelegt von Matthias Schmidt |
264 | 1 | |c 2000 | |
300 | |a III, 149, 7 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Leipzig, Univ., Diss., 2000 | ||
650 | 0 | 7 | |a Prinzipalbündel |0 (DE-588)4384701-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Orbit |g Mathematik |0 (DE-588)4238277-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eichtransformation |0 (DE-588)4122126-6 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Eichtransformation |0 (DE-588)4122126-6 |D s |
689 | 0 | 1 | |a Prinzipalbündel |0 (DE-588)4384701-8 |D s |
689 | 0 | 2 | |a Orbit |g Mathematik |0 (DE-588)4238277-4 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009039503&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-009039503 |
Datensatz im Suchindex
_version_ | 1812460981673000960 |
---|---|
adam_text |
CONTENTS
1 INTRODUCTION 1
2 PRELIMINARIES 5
2.1 PRINCIPAL FIBRE BUNDLES . 5
2.2 GEOMETRIC FORMULATION OF A CLASSICAL EUKLIDEAN PURE GAUGE THEORY
. 10
3 THE ACTION OF THE GROUP OF GAUGE TRANSFORMATIONS ON THE SPACE OF
CONNECTIONS 13
3.1 ANALYTICAL SETTING. 13
3.1.1 THE ACTION AS A SMOOTH LIE GROUP ACTION. 13
3.1.2 THE GAUGE ORBIT SPACE . 14
3.1.3 STABILIZERS AND ORBIT TYPES. 15
3.2 THE STRATIFICATION OF THE GAUGE ORBIT SPACE. 15
3.2.1 STRATIFICATION OF A TOPOLOGICAL SPACE. 15
3.2.2 THE STRATIFICATION INDUCED BY ORBIT TYPES. 17
3.3 SOME PHYSICAL ASPECTS OF THE STRATIFICATION. 19
3.3.1 THE NATURAL RIEMANNIAN GEOMETRY OF THE STRATA. 19
3.3.2 GAUGES. 21
3.3.3 KINEMATICAL NODES. 22
3.4 GAUGE ORBIT TYPES AND HTFIONOMY-INDUCED HOWE SUBBUNDLES . 24
3.4.1 HOLONOMY-INDUCED HOWE SUBBUNDLES. 24
3.4.2 MAPS RELATING STABILIZERS TO SUBBUNDLES. 26
3.4.3 GAUGE ORBIT TYPES. 30
3.4.4 HOW TO PROCEED. 31
4 THE HOWE SUBGROUPS OF
SUN 33
4.1 GENERAL REMARKS. 33
4.2 CONSTRUCTION OF HOWE SUBGROUPS . 34
4.2.1 THE SET K(N). 34
4.2.2 THE SUBGROUPS SUJ.34
4.3 THE SUBORDINATION EQUATIONS.37
4.3.1 DERIVING THE EQUATIONS. 37
4.3.2 THE USE OF SOLUTIONS. 39
L
BIBLIOGRAFISCHE INFORMATIONEN
HTTP://D-NB.INFO/958926816
4.4 SUBORDINATING MATRICES. 40
4.4.1 ELEMENTARY PROPERTIES.40
4.4.2 REPRESENTATION BY DIAGRAMS. 41
4.4.3 THE FUNCTIONS L+, L_, AND L.42
4.4.4 SUBORDINATING MATRICES OF LEVEL 0.44
4.4.5 SUBORDINATING MATRICES OF LEVEL 1.45
4.5 CLASSIFICATION. 49
4.5.1 THE SET K(N). 50
4.5.2 CLASSIFICATION THEOREM. 51
4.6 PARTIAL ORDERING. 51
4.6.1 MAXIMAL AND MINIMAL ELEMENT. 51
4.6.2 DIRECT SUCCESSORS. 52
4.7 EXAMPLES. 54
4.7.1 EXAMPLES OF SUBORDINATION EQUATIONS. 55
4.7.2 RECONSTRUCTION OF K(N), N = 2,., 5. 57
5 THE HOWE SUBBUNDLES OF SUN-BUNDLES 61
5.1 PRELIMINARIES. 61
5.1.1 UNIVERSAL BUNDLES AND CLASSIFYING SPACES., 62
5.1.2 CHARACTERISTIC CLASSES . 64
5.1.3 EILENBERG-MACLANE SPACES.64
5.1.4 K(Z, 2) AND THE CLASSIFICATION OF UL-BUNDLES.66
5.1.5 K(ZG, 1) AND THE CLASSIFICATION OF Z9-BUNDLES.68
5.1.6 THE POSTNIKOV DECOMPOSITION. 74
5.2 THE HOMOTOPY GROUPS OF SUJ. 76
5.2.1 MAPS RELATED TO UJ AND SUJ. 76
5.2.2 CONNECTED COMPONENTS . 77
5.2.3 HOMOTOPY GROUPS . 77
5.3 CHARACTERISTIC CLASSES RELEVANT FOR CLASSIFICATION. 78
5.3.1 THE POSTNIKOV DECOMPOSITION OF BG UP TO LEVEL N = 5. 78
5.3.2 EXAMPLE: THE GROUP UN. 82
5.3.3 EXAMPLE: THE GROUP SUN . . . 83
5.3.4 EXAMPLE: THE GROUP UJ. 84
5.4 THE COHOMOLOGY OF BSUJ. 87
5.4.1 THE COHOMOLOGY ALGEBRA /J*(BSUJ, Z). 87
5.4.2 THE COHOMOLOGY ALGEBRA H*(BSUJ, Z9). 89
5.5 CHARACTERISTIC CLASSES FOR SUJ-BUNDLES.94
5.6 CLASSIFICATION OF SUJ-BUNDLES IN DIMENSION D 4.95
5.7 THE SUJ-SUBBUNDLES OF P.97
5.8 ANY HOWE SUBBUNDLE OF P IS HOLONOMY-INDUCED.99
5.9 EXAMPLES.100
5.9.1 BASE MANIFOLDS WITH TORSION-FREE FIRST HOMOLOGY GROUP.101
5.9.2 BASE MANIFOLD LP X S1.103
11
6 DERIVATION OF HOWE(P) 107
6.1 THE SET K(P) .107
6.2 THE SUBORDINATION EQUATION OF J TO J' .108
6.2.1 DERIVING THE EQUATION.108
6.2.2 THE USE OF SOLUTIONS.114
6.3 CLASSIFICATION.115
6.3.1 THE SET K(P).115
6.3.2 CLASSIFICATION THEOREM.116
6.4 PARTIAL ORDERING.117
6.4.1 RELATION TO THE PARTIAL ORDERING OF K(N).117
6.4.2 MINIMAL AND MAXIMAL ELEMENTS.117
6.4.3 COMPUTATION OF AA.118
6.4.4 GENERATION OF SUCCESSORS.118
6.4.5 DIRECT SUCCESSORS.120
6.4.6 DIRECT PREDECESSORS.122
6.5 SUMMARY.126
6.6 EXAMPLES . . . R.127
6.6.1 AN EXAMPLE FOR A SUBORDINATION EQUATION.127
6.6.2 EXAMPLES FOR THE GENERATION OF DIRECT SUCCESSORS.128
6.6.3 AN EXAMPLE FOR THE GENERATION OF DIRECT PREDECESSORS .129
7 SOME APPLICATIONS 131
7.1 CONTACTING OF STRATA THROUGH SINGULARITIES.132
7.2 GAUGE ORBIT TYPES FOR SU2.132
7.3 KINEMATICAL NODES IN 2 + 1-DIMENSIONAL TOPOLOGICALLY MASSIVE
YANG-MILLS
THEORY.137
8 CONCLUSION 139
INDEX OF NOTATION 141
BIBLIOGRAPHY 145
M |
any_adam_object | 1 |
author | Schmidt, Matthias |
author_facet | Schmidt, Matthias |
author_role | aut |
author_sort | Schmidt, Matthias |
author_variant | m s ms |
building | Verbundindex |
bvnumber | BV013261040 |
classification_tum | PHY 417d MAT 554d |
ctrlnum | (OCoLC)632773954 (DE-599)BVBBV013261040 |
discipline | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV013261040</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20020211</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">000720s2000 m||| 00||| und d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">958926816</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)632773954</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013261040</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">und</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 417d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 554d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schmidt, Matthias</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gauge orbit types for theories with gauge group SUn</subfield><subfield code="c">vorgelegt von Matthias Schmidt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">III, 149, 7 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Leipzig, Univ., Diss., 2000</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prinzipalbündel</subfield><subfield code="0">(DE-588)4384701-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Orbit</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4238277-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eichtransformation</subfield><subfield code="0">(DE-588)4122126-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Eichtransformation</subfield><subfield code="0">(DE-588)4122126-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Prinzipalbündel</subfield><subfield code="0">(DE-588)4384701-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Orbit</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4238277-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009039503&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009039503</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV013261040 |
illustrated | Not Illustrated |
indexdate | 2024-10-09T18:11:27Z |
institution | BVB |
language | Undetermined |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009039503 |
oclc_num | 632773954 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-355 DE-BY-UBR |
owner_facet | DE-91 DE-BY-TUM DE-355 DE-BY-UBR |
physical | III, 149, 7 S. |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
record_format | marc |
spelling | Schmidt, Matthias Verfasser aut Gauge orbit types for theories with gauge group SUn vorgelegt von Matthias Schmidt 2000 III, 149, 7 S. txt rdacontent n rdamedia nc rdacarrier Leipzig, Univ., Diss., 2000 Prinzipalbündel (DE-588)4384701-8 gnd rswk-swf Orbit Mathematik (DE-588)4238277-4 gnd rswk-swf Eichtransformation (DE-588)4122126-6 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Eichtransformation (DE-588)4122126-6 s Prinzipalbündel (DE-588)4384701-8 s Orbit Mathematik (DE-588)4238277-4 s DE-604 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009039503&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Schmidt, Matthias Gauge orbit types for theories with gauge group SUn Prinzipalbündel (DE-588)4384701-8 gnd Orbit Mathematik (DE-588)4238277-4 gnd Eichtransformation (DE-588)4122126-6 gnd |
subject_GND | (DE-588)4384701-8 (DE-588)4238277-4 (DE-588)4122126-6 (DE-588)4113937-9 |
title | Gauge orbit types for theories with gauge group SUn |
title_auth | Gauge orbit types for theories with gauge group SUn |
title_exact_search | Gauge orbit types for theories with gauge group SUn |
title_full | Gauge orbit types for theories with gauge group SUn vorgelegt von Matthias Schmidt |
title_fullStr | Gauge orbit types for theories with gauge group SUn vorgelegt von Matthias Schmidt |
title_full_unstemmed | Gauge orbit types for theories with gauge group SUn vorgelegt von Matthias Schmidt |
title_short | Gauge orbit types for theories with gauge group SUn |
title_sort | gauge orbit types for theories with gauge group sun |
topic | Prinzipalbündel (DE-588)4384701-8 gnd Orbit Mathematik (DE-588)4238277-4 gnd Eichtransformation (DE-588)4122126-6 gnd |
topic_facet | Prinzipalbündel Orbit Mathematik Eichtransformation Hochschulschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009039503&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT schmidtmatthias gaugeorbittypesfortheorieswithgaugegroupsun |