Profinite groups:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2000
|
Schriftenreihe: | Ergebnisse der Mathematik und ihrer Grenzgebiete
3. Folge ; 40 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. [415] - 423 |
Beschreibung: | XIV, 435 S. graph. Darst. |
ISBN: | 3540669868 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV013177814 | ||
003 | DE-604 | ||
005 | 20191204 | ||
007 | t | ||
008 | 000523s2000 d||| |||| 00||| eng d | ||
016 | 7 | |a 959004904 |2 DE-101 | |
020 | |a 3540669868 |9 3-540-66986-8 | ||
035 | |a (OCoLC)247402488 | ||
035 | |a (DE-599)BVBBV013177814 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-355 |a DE-29T |a DE-384 |a DE-91G |a DE-634 |a DE-706 |a DE-11 | ||
050 | 0 | |a QA174.2 | |
082 | 0 | |a 512/.2 |2 21 | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a MAT 203f |2 stub | ||
100 | 1 | |a Ribes, Luis |e Verfasser |0 (DE-588)114075100X |4 aut | |
245 | 1 | 0 | |a Profinite groups |c Luis Ribes ; Pavel Zalesskii |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2000 | |
300 | |a XIV, 435 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete : 3. Folge |v 40 | |
500 | |a Literaturverz. S. [415] - 423 | ||
650 | 7 | |a Groepentheorie |2 gtt | |
650 | 4 | |a Groupes profinis | |
650 | 7 | |a Groupes, Théorie des |2 ram | |
650 | 7 | |a Grupos profinitos |2 larpcal | |
650 | 7 | |a Álgebra |2 larpcal | |
650 | 4 | |a Profinite groups | |
650 | 0 | 7 | |a Proendliche Gruppe |0 (DE-588)4132444-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Proendliche Gruppe |0 (DE-588)4132444-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Zalesskij, Pavel |e Verfasser |0 (DE-588)1067816542 |4 aut | |
830 | 0 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete |v 3. Folge ; 40 |w (DE-604)BV000899194 |9 40 | |
856 | 4 | 2 | |m SWBplus Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008978890&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-008978890 |
Datensatz im Suchindex
_version_ | 1804127878787366912 |
---|---|
adam_text | TABLE OF CONTENTS PREFACE . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII 1
INVERSE AND DIRECT LIMITS 1.1 INVERSE OR PROJECTIVE LIMITS . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 1 1.2 DIRECT OR INDUCTIVE
LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3
NOTES, COMMENTS AND FURTHER READING . . . . . . . . . . . . . . . . . .
18 2 PROFLNITE GROUPS 2.1 PRO - C GROUPS . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 BASIC PROPERTIES
OF PRO - C GROUPS . . . . . . . . . . . . . . . . . . . . . . 28
EXISTENCE OF SECTIONS . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 29 EXACTNESS OF INVERSE LIMITS OF PROFLNITE GROUPS . . . . . 31
2.3 THE ORDER OF A PROFLNITE GROUP AND SYLOW SUBGROUPS . . . . . 32 2.4
GENERATORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 43 2.5 FINITELY GENERATED PROFLNITE GROUPS . . .
. . . . . . . . . . . . . . . . . 45 2.6 GENERATORS AND CHAINS OF
SUBGROUPS . . . . . . . . . . . . . . . . . . . . 48 2.7 PROCYCLIC
GROUPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 52 2.8 THE FRATTINI SUBGROUP OF A PROFLNITE GROUP . . . . . . .
. . . . . . . 54 2.9 PONTRYAGIN DUALITY FOR PROFLNITE GROUPS . . . . . .
. . . . . . . . . . . 60 2.10 PULLBACKS AND PUSHOUTS . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 68 2.11 PROFLNITE GROUPS AS
GALOIS GROUPS . . . . . . . . . . . . . . . . . . . . . . 70 2.12 NOTES,
COMMENTS AND FURTHER READING . . . . . . . . . . . . . . . . . . 75 3
FREE PROFLNITE GROUPS 3.1 PROFLNITE TOPOLOGIES . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 79 3.2 THE PRO - C
COMPLETION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 82 THE COMPLETION FUNCTOR . . . . . . . . . . . . . . . . . . . . . .
. . 85 3.3 FREE PRO - C GROUPS . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 90 FREE PRO - C GROUP ON A SET CONVERGING TO
1 . . . . . . . 93 3.4 MAXIMAL PRO - C QUOTIENT GROUPS . . . . . . . . .
. . . . . . . . . . . . . . 101 3.5 CHARACTERIZATION OF FREE PRO - C
GROUPS . . . . . . . . . . . . . . . . . . 103 3.6 OPEN SUBGROUPS OF
FREE PRO - C GROUPS . . . . . . . . . . . . . . . . . . 117 XII TABLE OF
CONTENTS 3.7 NOTES, COMMENTS AND FURTHER READING . . . . . . . . . . . .
. . . . . . 120 4 SOME SPECIAL PROFLNITE GROUPS 4.1 POWERS OF ELEMENTS
WITH EXPONENTS FROM B Z . . . . . . . . . . . . . . 123 4.2 SUBGROUPS OF
FINITE INDEX IN A PROFLNITE GROUP . . . . . . . . . . . 124 4.3
PROFLNITE ABELIAN GROUPS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 133 4.4 AUTOMORPHISM GROUP OF A PROFLNITE GROUP . . . . . .
. . . . . . . . 136 4.5 AUTOMORPHISM GROUP OF A FREE PRO- P GROUP . . .
. . . . . . . . . . 143 4.6 PROFLNITE FROBENIUS GROUPS . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 147 4.7 TORSION IN THE PROFLNITE
COMPLETION OF A GROUP . . . . . . . . . . . 154 4.8 NOTES, COMMENTS AND
FURTHER READING . . . . . . . . . . . . . . . . . . 160 5 DISCRETE AND
PROFLNITE MODULES 5.1 PROFLNITE RINGS AND MODULES . . . . . . . . . . .
. . . . . . . . . . . . . . . . 165 DUALITY BETWEEN DISCRETE AND
PROFLNITE MODULES . . . . 171 5.2 FREE PROFLNITE MODULES . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 172 5.3 G -MODULES AND
COMPLETE GROUP ALGEBRAS . . . . . . . . . . . . . . . 175 THE COMPLETE
GROUP ALGEBRA . . . . . . . . . . . . . . . . . . . . 177 5.4 PROJECTIVE
AND INJECTIVE MODULES . . . . . . . . . . . . . . . . . . . . . . . 179
5.5 COMPLETE TENSOR PRODUCTS . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 183 5.6 PROFLNITE G -SPACES . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 187 5.7 FREE PROFLNITE [[ RG
]]-MODULES . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 5.8
DIAGONAL ACTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 196 5.9 NOTES, COMMENTS AND FURTHER READING . . . . .
. . . . . . . . . . . . . 199 6 HOMOLOGY AND COHOMOLOGY OF PROFLNITE
GROUPS 6.1 REVIEW OF HOMOLOGICAL ALGEBRA . . . . . . . . . . . . . . . .
. . . . . . . . . 201 RIGHT AND LEFT DERIVED FUNCTORS . . . . . . . . .
. . . . . . . . 205 BIFUNCTORS . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 206 THE EXT FUNCTORS . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 207 THE TOR FUNCTORS . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 208 6.2 COHOMOLOGY
WITH COE*CIENTS IN DMOD ([[ RG ]]) . . . . . . . . . . . 210 STANDARD
RESOLUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
6.3 HOMOLOGY WITH COE*CIENTS IN PMOD ([[ RG ]]) . . . . . . . . . . . .
. 214 6.4 COHOMOLOGY GROUPS WITH COE*CIENTS IN DMOD ( G ) . . . . . . .
219 6.5 THE FUNCTORIAL BEHAVIOR OF H N ( G;A ) AND H N ( G;A ) . . . . .
. . 220 THE IN*ATION MAP . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 221 6.6 H N ( G;A ) AS DERIVED FUNCTORS ON DMOD ( G ) . . .
. . . . . . . . . . 227 6.7 SPECIAL MAPPINGS . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 231 THE RESTRICTION MAP IN
COHOMOLOGY . . . . . . . . . . . . . . 231 THE CORESTRICTION MAP IN
COHOMOLOGY . . . . . . . . . . . . 232 THE CORESTRICTION MAP IN HOMOLOGY
. . . . . . . . . . . . . . 236 THE RESTRICTION MAP IN HOMOLOGY . . . .
. . . . . . . . . . . . 236 6.8 HOMOLOGY AND COHOMOLOGY GROUPS IN LOW
DIMENSIONS . . . . 238 TABLE OF CONTENTS XIII H 2 ( G;A ) AND EXTENSIONS
OF PROFLNITE GROUPS . . . . . . 240 6.9 EXTENSIONS OF PROFLNITE GROUPS
WITH ABELIAN KERNEL . . . . . . . 245 6.10 INDUCED AND COINDUCED MODULES
. . . . . . . . . . . . . . . . . . . . . . . . 250 6.11 THE INDUCED
MODULE IND G H ( B ) FOR H OPEN . . . . . . . . . . . . . . . 255 6.12
NOTES, COMMENTS AND FURTHER READING . . . . . . . . . . . . . . . . . .
257 7 COHOMOLOGICAL DIMENSION 7.1 BASIC PROPERTIES OF DIMENSION . . . .
. . . . . . . . . . . . . . . . . . . . . . 259 7.2 THE
LYNDON-HOCHSCHILD-SERRE SPECTRAL SEQUENCE . . . . . . . . . . 264 7.3
COHOMOLOGICAL DIMENSION OF SUBGROUPS . . . . . . . . . . . . . . . . . .
269 7.4 COHOMOLOGICAL DIMENSION OF NORMAL SUBGROUPS AND QUOTIENTS . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 274 7.5 GROUPS G WITH CD P ( G ) * 1 . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 276 7.6 PROJECTIVE PROFLNITE GROUPS . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 280 7.7 FREE PRO- P
GROUPS AND COHOMOLOGICAL DIMENSION . . . . . . . . . 284 7.8 GENERATORS
AND RELATORS FOR PRO- P GROUPS . . . . . . . . . . . . . . . 287 7.9 CUP
PRODUCTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 291 7.10 NOTES, COMMENTS AND FURTHER READING . . . . . .
. . . . . . . . . . . . 298 8 NORMAL SUBGROUPS OF FREE PRO - C GROUPS
8.1 NORMAL SUBGROUP GENERATED BY A SUBSET OF A BASIS . . . . . . . 302
8.2 THE S -RANK . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 304 8.3 ACCESSIBLE SUBGROUPS . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 310 8.4 ACCESSIBLE
SUBGROUPS H WITH W 0 ( F=H ) RANK( F ) . . . . . . . . 315 8.5
HOMOGENEOUS PRO - C GROUPS . . . . . . . . . . . . . . . . . . . . . . .
. . . . 322 8.6 NORMAL SUBGROUPS . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 335 8.7 PROPER OPEN SUBGROUPS OF NORMAL
SUBGROUPS . . . . . . . . . . . . 344 8.8 THE CONGRUENCE KERNEL OF SL 2
( Z ) . . . . . . . . . . . . . . . . . . . . . . 349 8.9 SU*CIENT
CONDITIONS FOR FREENESS . . . . . . . . . . . . . . . . . . . . . . .
350 8.10 CHARACTERISTIC SUBGROUPS OF FREE PRO - C GROUPS . . . . . . . .
. . 357 8.11 NOTES, COMMENTS AND FURTHER READING . . . . . . . . . . . .
. . . . . . 360 9 FREE CONSTRUCTIONS OF PROFLNITE GROUPS 9.1 FREE PRO -
C PRODUCTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 361 9.2 AMALGAMATED FREE PRO - C PRODUCTS . . . . . . . . . . . .
. . . . . . . . . 375 9.3 COHOMOLOGICAL CHARACTERIZATIONS OF AMALGAMATED
PRODUCTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 383 9.4 PRO - C HNN-EXTENSIONS . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 390 9.5 NOTES, COMMENTS
AND FURTHER READING . . . . . . . . . . . . . . . . . . 397 OPEN
QUESTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 401 APPENDIX A1 SPECTRAL SEQUENCES . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 XIV
TABLE OF CONTENTS A2 POSITIVE SPECTRAL SEQUENCES . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 405 A3 SPECTRAL SEQUENCE OF A FILTERED
COMPLEX . . . . . . . . . . . . . . . . . 409 A4 SPECTRAL SEQUENCES OF A
DOUBLE COMPLEX . . . . . . . . . . . . . . . . 411 A5 NOTES, COMMENTS
AND FURTHER READING . . . . . . . . . . . . . . . . . . 413 BIBLIOGRAPHY
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 415 INDEX OF SYMBOLS . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 INDEX OF
AUTHORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 429 INDEX OF TERMS . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
|
any_adam_object | 1 |
author | Ribes, Luis Zalesskij, Pavel |
author_GND | (DE-588)114075100X (DE-588)1067816542 |
author_facet | Ribes, Luis Zalesskij, Pavel |
author_role | aut aut |
author_sort | Ribes, Luis |
author_variant | l r lr p z pz |
building | Verbundindex |
bvnumber | BV013177814 |
callnumber-first | Q - Science |
callnumber-label | QA174 |
callnumber-raw | QA174.2 |
callnumber-search | QA174.2 |
callnumber-sort | QA 3174.2 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 260 |
classification_tum | MAT 203f |
ctrlnum | (OCoLC)247402488 (DE-599)BVBBV013177814 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01859nam a2200481 cb4500</leader><controlfield tag="001">BV013177814</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191204 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">000523s2000 d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">959004904</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540669868</subfield><subfield code="9">3-540-66986-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)247402488</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013177814</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA174.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 203f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ribes, Luis</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)114075100X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Profinite groups</subfield><subfield code="c">Luis Ribes ; Pavel Zalesskii</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 435 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete : 3. Folge</subfield><subfield code="v">40</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. [415] - 423</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Groepentheorie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groupes profinis</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Groupes, Théorie des</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Grupos profinitos</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Álgebra</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Profinite groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Proendliche Gruppe</subfield><subfield code="0">(DE-588)4132444-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Proendliche Gruppe</subfield><subfield code="0">(DE-588)4132444-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zalesskij, Pavel</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1067816542</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete</subfield><subfield code="v">3. Folge ; 40</subfield><subfield code="w">(DE-604)BV000899194</subfield><subfield code="9">40</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWBplus Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008978890&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008978890</subfield></datafield></record></collection> |
id | DE-604.BV013177814 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:40:21Z |
institution | BVB |
isbn | 3540669868 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008978890 |
oclc_num | 247402488 |
open_access_boolean | |
owner | DE-20 DE-355 DE-BY-UBR DE-29T DE-384 DE-91G DE-BY-TUM DE-634 DE-706 DE-11 |
owner_facet | DE-20 DE-355 DE-BY-UBR DE-29T DE-384 DE-91G DE-BY-TUM DE-634 DE-706 DE-11 |
physical | XIV, 435 S. graph. Darst. |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer |
record_format | marc |
series | Ergebnisse der Mathematik und ihrer Grenzgebiete |
series2 | Ergebnisse der Mathematik und ihrer Grenzgebiete : 3. Folge |
spelling | Ribes, Luis Verfasser (DE-588)114075100X aut Profinite groups Luis Ribes ; Pavel Zalesskii Berlin [u.a.] Springer 2000 XIV, 435 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Ergebnisse der Mathematik und ihrer Grenzgebiete : 3. Folge 40 Literaturverz. S. [415] - 423 Groepentheorie gtt Groupes profinis Groupes, Théorie des ram Grupos profinitos larpcal Álgebra larpcal Profinite groups Proendliche Gruppe (DE-588)4132444-4 gnd rswk-swf Proendliche Gruppe (DE-588)4132444-4 s DE-604 Zalesskij, Pavel Verfasser (DE-588)1067816542 aut Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge ; 40 (DE-604)BV000899194 40 SWBplus Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008978890&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Ribes, Luis Zalesskij, Pavel Profinite groups Ergebnisse der Mathematik und ihrer Grenzgebiete Groepentheorie gtt Groupes profinis Groupes, Théorie des ram Grupos profinitos larpcal Álgebra larpcal Profinite groups Proendliche Gruppe (DE-588)4132444-4 gnd |
subject_GND | (DE-588)4132444-4 |
title | Profinite groups |
title_auth | Profinite groups |
title_exact_search | Profinite groups |
title_full | Profinite groups Luis Ribes ; Pavel Zalesskii |
title_fullStr | Profinite groups Luis Ribes ; Pavel Zalesskii |
title_full_unstemmed | Profinite groups Luis Ribes ; Pavel Zalesskii |
title_short | Profinite groups |
title_sort | profinite groups |
topic | Groepentheorie gtt Groupes profinis Groupes, Théorie des ram Grupos profinitos larpcal Álgebra larpcal Profinite groups Proendliche Gruppe (DE-588)4132444-4 gnd |
topic_facet | Groepentheorie Groupes profinis Groupes, Théorie des Grupos profinitos Álgebra Profinite groups Proendliche Gruppe |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008978890&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000899194 |
work_keys_str_mv | AT ribesluis profinitegroups AT zalesskijpavel profinitegroups |