Dynamics and control of large electric power systems:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Wiley
2000
|
Schriftenreihe: | A Wiley-Interscience publication
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVIII, 838 S. graph. Darst. |
ISBN: | 0471298581 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV013160252 | ||
003 | DE-604 | ||
005 | 20010209 | ||
007 | t | ||
008 | 000518s2000 d||| |||| 00||| eng d | ||
020 | |a 0471298581 |9 0-471-29858-1 | ||
035 | |a (OCoLC)444062574 | ||
035 | |a (DE-599)BVBBV013160252 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-91 |a DE-83 | ||
080 | |a 621.3 | ||
084 | |a ZN 8520 |0 (DE-625)157630: |2 rvk | ||
084 | |a ELT 903f |2 stub | ||
100 | 1 | |a Ilic, Marija D. |d 1951- |e Verfasser |0 (DE-588)124110495 |4 aut | |
245 | 1 | 0 | |a Dynamics and control of large electric power systems |c Marija Ilić & John Zaborszky |
264 | 1 | |a New York [u.a.] |b Wiley |c 2000 | |
300 | |a XVIII, 838 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a A Wiley-Interscience publication | |
650 | 0 | 7 | |a Netzregelung |0 (DE-588)4171525-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektrizitätsversorgungsnetz |0 (DE-588)4121178-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elektrizitätsversorgungsnetz |0 (DE-588)4121178-9 |D s |
689 | 0 | 1 | |a Netzregelung |0 (DE-588)4171525-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Zaborszky, John |e Verfasser |4 aut | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008966572&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-008966572 |
Datensatz im Suchindex
_version_ | 1804127860311457792 |
---|---|
adam_text | DYNAMICS AND CONTROL OF LARGE ELECTRIC POWER SYSTEMS MARIJA ILIC & JOHN
ZABORSZKY A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. NEW
YORK * CHICHESTER * WEINHEIM * BRISBANE * SINGAPORE * TORONTO CONTENTS
PREFACE 1 INTRODUCTION L. 1 SCOPE OF THE CONTENTS OF THE BOOK
ACKNOWLEDGMENTS 1 MODELING THE STRUCTURE AND COMPONENTS 2
QUASISTATIONARY PHASOR CONCEPTS 2.1 TIME-DOMAIN REPRESENTATION FOR AC
VOLTAGE, CURRENT, POWER, AND ENERGY 2.1.1 BASIC POWER-FLOW CONCEPTS ON
SINGLE-PHASE TRANSMISSION LINES 2.1.2 BASIC POWER-FLOW CONCEPTS ON
FHREE-PHASE TRANSMISSION LINES 2.2 DEFINITION OF THE PHASOR FOR AC
QUANTITIES 2.2.1 PHASOR INTERPRETATION OF POWER 2.3 CLASSICAL STATIONARY
PHASOR CALCULUS 2.4 THE CLASSICAL QUASISTATIONARY PHASOR CALCULUS 2.4.1
SOME GENERAL COMMENTS 2.5 SUMMARY OF THE CHARACTERISTICS OF ACTIVE- AND
REACTIVE-POWER FLOW 2.5.1 CHARACTERISTICS OF ACTIVE POWER P(T) IN THE
QUASISTATIONARY REGION 2.5.2 CHARACTERISTICS OF THE REACTIVE POWER Q(T)
IN THE QUASISTATIONARY REGION 2.5.3 OPTIMUM PERFORMANCE OF DEVICES
CHARACTERIZED BY AC SIGNALS 2.6 QUASISTATIONARY PHASOR CONCEPTS FOR
PERIODIC SIGNALS 2.6.1 TIME-DOMAIN REPRESENTATION FOR PERIODIC VOLTAGE
CURRENT, POWER, AND ENERGY 2.6.2 GENERALIZING PHASORS TO MULTIHARMONIC,
THAT IS, PERIODIC, SIGNALS 2.6.3 DEFINITION OF VECTOR PHASORS FOR
PERIODIC SIGNALS VUEI CONTENTS 2.6.4 PHASOR INTERPRETATION OF POWER 40
2.6.5 CONSERVATION OF REACTIVE-POWER COMPONENTS 43 2.6.6 CIRCUIT EXAMPLE
45 2.6.7 REACTIVE POWER IN LINEAR RLC CIRCUITS WITH POWER ELECTRONIC
SWITCHES 46 2.6.8 OPTIMUM PERFORMANCE OF DEVICES CHARACTERIZED BY
PERIODIC SIGNALS 47 2.6.9 OPTIMIZATION EXAMPLE USING VECTOR-SPACE
ALGEBRA 49 2.6.10 EXAMPLE OF OPTIMAL PERFORMANCE FOR SIGNALS WITH
HARMONICS 51 2.6.11 SUMMARY OF THE CHARACTERISTICS OF REAL- AND
REACTIVE-POWER FLOW 53 2.6.12 COMPARISON WITH OTHER REACTIVE-POWER
DEFINITIONS 55 2.7 VECTOR REPRESENTATION FOR MULTIPHASE CIRCUITS 57 2.8
CHAPTER SUMMARY 58 ANALYTICAL DYNAMIC MODEL OF THE POWER SYSTEM 61 3.1
FUNDAMENTAL STATIC AND DYNAMIC STRUCTURES OF THE POWER-TRANSMISSION
SYSTEM 65 3.1.1 STRUCTURE OF THE OVERALL POWER-SYSTEM MODEL 65 3.1.2
DISCUSSION OF FIGURES 3.2 AND 3.3 67 3.2 PARTICULARS OF THE MODEIS OF
POWER-SYSTEM COMPONENTS 68 3.2.1 BUSES 69 3.2.2 HV-AC POWER-TRANSMISSION
LINES 72 3.2.3 BUS-CONNECTED EQUIPMENT WITH ESTABLISHED MODEIS OF
UNIFORM TYPE 78 3.2.4 BUS-CONNECTED EQUIPMENT WITH MODEIS CONSISTING OF
MANY INDIVIDUAL TYPES, MOSTLY PRIMARY CONTROLLERS 135 APPENDIX 3.1
CONCEPTUAL DERIVATION OF ALGEBRAIC COUPLING EQUATIONS FOR GENERATOR AND
BUS 162 APPENDIX 3.2 MODEL DERIVATION (EQS. 3.207) TO (3.209) 162 MODELS
FOR COMPUTER-AIDED ANALYSIS AND CONTROL 169 4.1 UTILIZATION OF CIRCUIT
THEORY METHODS 170 4.1.1 CLASSIFICATION OF COMPONENT TYPES 170 4.1.2
CONSTITUENT RELATIONS FOR SINGLE-PORT COMPONENTS 171 4.1.3 CONSTITUENT
RELATIONS FOR TRANSMISSION LINES 176 4.1.4 COMPUTER FORMULATION OF THE
KIRCHOFF LAWS 179 4.1.5 TRANSMISSION NETWORK ADMITTANCE MATRIX AND ITS
PROPERTIES 183 4.1.6 SUMMARY OF A GENERAL DAE MODEL 186 CONTENTS 4.1.7
MODELS FOR HORIZONTALLY STRUCTURED LARGE POWER SYSTEMS 190 4.2 NON
LINEAR POWER SYSTEM MODEIS IN ORDINARY DIFFERENTIAL EQUATION FORM 191
4.2.1 COUPLED REAL-POWER-VOLTAGE DYNAMICS FOR LARGE-POWER SYSTEMS
(MACHINE FRAME OF REFERENCE) 192 4.2.2 NONLINEAR POWER-SYSTEM MODEL IN
AN ODE FORM (PHASOR FRAME OF REFERENCE) 196 4.3 ELEMENTARY OVERVIEW OF
STABILITY PROBLEMS IN THE POWER SYSTEM 198 4.3.1 STATIC STABILITY AND
STATIC EQUILIBRIA 201 4.3.2 REAL-POWER STATIC STABILITY 201 4.3.3
REACTIVE-POWER STATIC STABILITY 202 4.3.4 STATIC STABILITY LIMIT 203
4.3.5 SMALL-SIGNAL-STABILITY. CLASSIFICATION OF EQUILIBRIUM POINTS 204
4.3.6 TRANSIENT STABILITY 205 4.3.7 TRANSIENT STABILITY IN REACTIVE
POWER 206 4.3.8 MEDIUM- AND LONG-RANGE OR MULTISWING INSTABILITY 208
4.3.9 MEDIUM-RANGE INSTABILITY 208 4.3.10 LONG-RANGE INSTABILITY IN REAL
POWER 208 4.3.11 LONG-RANGE INSTABILITY IN REACTIVE POWER 209 ANALYSIS
OF STATIONARY AND DYNAMIC PROCESSES 211 STATIONARY ANALYSIS 213 5.1
POWER-SYSTEM EQUILIBRIUM DEFINITION 213 5.2 LOAD-FLOW PROBLEM 215 5.2.1
ANALYTIC PROPERTIES OF THE LOAD-FLOW EQUATIONS 218 5.2.2
REAL-POWER-REACTIVE-POWER DECOUPLING CONDITIONS 219 5.3 DECOUPLED
REAL-POWER-ANGLE LOAD-FLOW PROBLEM 222 5.3.1 LINEAR RESISTIVE NETWORK
INTERPRETATION OF THE DC LOAD-FLOW PROBLEM 223 5.3.2 NONLINEAR RESISTOR
NETWORK INTERPRETATION OF THE P-S LOAD-FLOW PROBLEM 225 5.3.3 LOCALIZED
RESPONSE PROPERTY OF THE P-S POWER NETWORK 235 5.3.4 P-S LOAD-FLOW
PROBLEM IN DEREGULATED INDUSTRY 245 5.4 DECOUPLED REACTIVE-POWER-VOLTAGE
Q-V LOAD-FLOW PROBLEM 258 5.4.1 PROBLEM COMPLEXITY AS A FUNCTION OF LOAD
MODEIS USED 259 X CONTENTS 5.4.2 Q-V PROBLEM WITH CONSTANT-POWER LOAD
MODEIS 261 5.4.3 Q-V LOAD FLOW PROBLEM AS A PROBLEM OF A NONLINEAR
RESISTIVE NETWORK WITH INDEPENDENT SOURCES 261 5.4.4 Q-V LOAD-FLOW
PROBLEM AS A PROBLEM OF A LINEAR RESISTIVE NETWORK WITH DEPENDENT
SOURCES 266 5.5 LOW-VOLTAGE PROBLEMS UNDER HEAVY REAL-POWER TRANSFERS
274 5.5.1 RADIAL CIRCUIT FED BY A CONSTANT-VOLTAGE SOURCE 276 5.6 MEANS
OF INCREASING REAL-POWER TRANSFER 277 5.6.1 LOAD COMPENSATION AND
HIGH-VOLTAGE PROBLEMS 278 5.6.2 LINE COMPENSATION AS A MEANS OF
INCREASING REAL-POWER TRANSFER 283 5.7 STEADY-STATE STABILITY PROBLEM AS
A COUPLED P-Q PROBLEM 285 5.7.1 TWO-BUS SYSTEM CONCEPTS 286 5.7.2
METHODS FOR MULTIBUS SYSTEMS 288 5.8 NUMERICAL TOOLS USED IN THE
SOLUTION OF POWER-FLOW EQUATIONS 290 5.9 CONTINUATION METHODS 291 5.9.1
INTRODUCTION TO THE CONTINUATION PARADIGM 292 5.9.2 PROBLEMS WITH THE
EMBEDDING ALGORITHM 296 5.9.3 HOMOTOPY METHODS VERSUS CLASSICAL
EMBEDDING ALGORITHMS 297 5.9.4 TRACKING THE PATHS 301 5.9.5 CHOOSING A
HOMOTOPY METHOD 303 5.9.6 HOMOTOPY VARIATIONS 303 5.9.7 FREE-RUNNING
VERSUS FORCED HOMOTOPIES 303 5.9.8 GLOBALLY CONVERGENT PROBABILITY-1
HOMOTOPY ALGORITHMS 304 5.9.9 APPLICATIONS OF FORCED AND FREE-RUNNING
HOMOTOPY METHODS 305 5.9.10 CIRCUIT APPLICATIONS 305 5.9.11 APPLICATIONS
OF CONTINUATION METHODS TO POWER SYSTEMS 306 5.9.12 HOMOTOPY SOFTWARE
HOMPACK 307 5.9.13 POWER-FLOW PROBLEM AND HOMPACK 307 5.9.14 SIMULATION
RESULTS 309 5.9.15 HOMOTOPY APPLICATIONS TO THE Q-V PROBLEM 313 5.9.16
COUPLED LOAD-FLOW PROBLEM: BERGEN S EXAMPLE 316 5.9.17 SIMULATION
CONCLUSIONS 316 5.10 CHAPTER SUMMARY 320 APPENDIX 5.1 THE NEWTON-RAPHSON
METHOD 321 CONTENTS 6 ANALYSIS OF LINEA RIZED (SMAII-SIGNAL) DYNAMICS
333 6.1 OBJECTIVES OF SMALL-SIGNAL ANALYSIS STUDIES IN POWER SYSTEMS 335
6.1.1 EFFECT OF MODEIS EMPLOYED ON STABILITY ANALYSIS AND ITS RESULTS
335 6.1.2 A MULTIPARAMETER SINGULARLY PERTURBED MODEL OF AN ELECTRIC
POWER SYSTEM 337 6.2 SEPARATION OF FAST ANGLE AND MIDRANGE VOLTAGE
DYNAMICS 340 6.2.1 INTEGRAL-MANIFOLD DERIVATIONS 343 6.2.2 RELEVANT
MODEL FOR FAST ANGLE DYNAMICS 347 6.2.3 RELEVANT MODEL OF MIDRANGE
VOLTAGE DYNAMICS 348 6.3 SLOW VOLTAGE DYNAMICS 349 6.3.1 INTERACTIONS OF
THE OLTC CONTROL AND MIDRANGE VOLTAGE DYNAMICS 349 6.3.2 APPROXIMATE
CONTINUOUS MODEL FOR MIDRANGE VOLTAGE DYNAMICS 35] 6.4 SLOW FREQUENCY
DYNAMICS 352 6.4.1 GOVERNOR-TURBINE CONTROL OF FREQUENCY DYNAMICS 353
6.4.2 REAL-POWER NETWORK CONSTRAINTS 355 6.4.3 REAL-POWER-FREQUENCY
DYNAMICS OF AN INTERCONNECTED SYSTEM 358 6.5 MIDRANGE VOLTAGE DYNAMICS
359 6.5.1 EXCITER CONTROL OF REACTIVE-POWER*VOLTAGE DYNAMICS 359 6.5.2
REACTIVE-POWER NETWORK CONSTRAINTS 361 6.6 INTERAREA DYNAMICS 363 6.6.1
DEFINITION OF THE INTERAREA VARIABLES 364 6.6.2 FUNDAMENTAL RELATIONS
RELEVANT FOR ANALYSIS OF THE INTERAREA DYNAMICS 365 6.6.3 COMPUTATION OF
INTERAREA VARIABLES 366 6.6.4 MODELING OF THE INTERAREA DYNAMICS 367
6.6.5 DYNAMICS OF INTERAREA VARIABLES ON AN INTERCONNECTED POWER SYSTEM
368 6.7 MODEL REDUCTION AT THE INTERCONNECTED SYSTEM LEVEL 37] 6.7.1
TIME-SCALE SEPARATION IN AGGREGATE AND COHERENT MODEIS 372 APPENDIX 6.1
MACHINE PARAMETERS AND NETWORK DATA 374 APPENDIX 6.2 SINGULAR
PERTURBATION METHOD FOR MODEL REDUCTION 376 XII CONTENTS APPENDIX 6.3
EIGENMODE-BASED MODEL REDUCTION: SELECTIVE MODAL ANALYSIS 381 APPENDIX
6.4 SOME RELATIONS BETWEEN SP-AND SMA-BASED MODEL REDUCTION TECHNIQUES
384 INTRODUCTION TO THE CONCEPTS AND STRUCTURE OF COMPREHENSIVE
POWER-SYSTEM DYNAMICS 391 7.1 NONLINEAR DYNAMIC ANALYSIS OF A MINIMAL
POWER SYSTEM 393 7.1.1 A MINIMAL POWER SYSTEM MODEL WITH (LOSS-LESS)
GENERATOR AND MATCHED LOAD 393 7.1.2 PARAMETER SPACE 396 7.1.3 STATE
SPACE 396 7.1.4 TIME HISTORIES OF INDIVIDUAL STATE VARIABLES 400 7.1.5 A
GUIDED TOUR THROUGH THE PARAMETER AND STATE SPACES AND THE TIME
HISTORIES 401 7.1.6 SOME OBSERVATIONS 403 7.2 VOLTAGE STABILITY ANALYSIS
OF THE RUDIMENTARY POWER SYSTEM 405 7.2.1 POWER-SYSTEM MODEL WITH
GENERATOR, VOLTAGE CONTROL, TRANSMISSION AND MATCHED LOAD 406 7.2.2
BASIC FEATURES OF THE STRUCTURE OF THE STATE-SPACE * PARAMETER SPACES
409 7.2.3 EXPLORATION OF CHANGES CAUSED BY VARIATIONS IN THE LOAD MODEL
AND THE TYPE OF CONTROL USED 427 7.2.4 BIFURCATION ANALYSIS FOR THE
RUDIMENTARY POWER SYSTEM 429 APPENDIX 7.1 SOME ASPECTS OF THE PHASE
PORTRAIT (THE FLOW OF THE VECTOR FIELD) 440 APPENDIX 7.2 SOME ASPECTS OF
BIFURCATIONS 442 SMOOTH NONLINEAR DYNAMICS OF THE LARGE POWER SYSTEM 451
8.1 HISTORICAL SKETCH OF THE DEVELOPMENT OF ANALYTIC TOOLS FOR LARGE
COMPREHENSIVE POWER-SYSTEM DYNAMICS 455 8.2 DYNAMICS OF THE DAE SYSTEM
459 8.2.1 STATE-SPACE STRUCTURE OF THE DAE DYNAMICS, 462 8.2.2
ANALYSIS OF THE STABILITY REGIONS 473 8.2.3 STRUCTURE OF THE PARAMETER
SPACE 482 DYNAMIC COMPUTATION ANALYSIS ON REALISTIC SIZE (THOUSANDS OF
BUSES) SYSTEMS WITH REAL-LIFE EXAMPLES 499 9.1 COMPUTATIONAL ASPECTS OF
THE HOPF-BIFURCATION-RELATED 500 SEGMENT OF THE FEASIBILITY BOUNDARY
9.1.1 SYSTEM DESCRIPTION 500 9.1.2 SOME ASPECTS OF THE HOPF BIFURCATION
AND ITS VICINITY 501 CONTENTS XIII 9.1.3 CRITICAL EIGENVALUE 502 9.1.4
ITERATIVE TECHNIQUE FOR FINDING A HOPF-BIFURCATION POINT 504 9.1.5
METHOD FOR COMPUTING A HOPF-BIFURCATION- RELATED FEASIBILITY BOUNDARY
505 9.1.6 COMPUTATIONAL ANALYSIS 507 9.1.7 COMPUTATION OF THE
HOPF-BIFURCATION- RELATED SEGMENT 511 9.2 USE OF LARGE-SCALE COMPUTATION
RESULTS FOR STUDYING THE NATURE AND INTERACTIONS NEAR THE FEASIBILITY
BOUNDARY 518 9.2.1 EFFECT OF USING LOWER-DEGREE APPROXIMATIONS 518 10
LARGE SMOOTH SYSTEMS WITH EMBEDDED DISCONTINUOUS NONLINEAR CONSTRAINIS
523 10.1 AUTOMATIC-TAP-CHANGER-BASED CONTROL EMBEDDED IN
DIFFERENTIAL-ALGEBRAIC EQUATION SYSTEMS 523 10.1.1 PHYSICAL FEATURES 524
10.1.2 EFFECT OF THE AUTOMATIC TAP CHANGER ON THE FEASIBILITY BOUNDARY
IN PARAMETER SPACE 525 10.1.3 TRANSIENT PHENOMENA CONNECTED WITH THE TAP
CHANGER IN THE STATE SPACE 527 10.2 DYNAMICS OF THE LARGE DAE POWER
SYSTEM WITH EMBEDDED HARD LIMITS 528 10.2.1 MODELING THE LARGE POWER
SYSTEM WITH HARD LIMITS 529 10.2.2 CONCEPTUAL INTRODUCTION ON SMALL
SYSTEMS 531 10.2.3 HARD LIMITS IN THE POWER-SYSTEM MODEL 540 10.2.4
STATE-SPACE STRUCTURE: REGION OF ATTRACTION AND STABILITY BOUNDARY 541
10.2.5 PARAMETER-SPACE STRUCTURE: THE BOUNDARY OF SMALL-SIGNAL STABILITY
547 10.3 SUMMARY 551 11 BEYOND QUASISTATIONARITY AND THE
LUMPED-PARAMETER MODEL 555 11.1 GENERALIZED TIME-VARYING PHASOR
TRANSFORMATION 556 11.1.1 LOW-PASS PHASOR SIGNALS 559 11.1.2 THREE-PHASE
BALANCED PHASOR SIGNALS 560 11.2 TIME-VARYING PHASOR AND ITS PROPERTIES
562 11.2.1 PARTS OF THE POWER SYSTEM FOR WHICH PHASORS APPLY 568 11.2.2
PHASORS IN THE G SET THE TRANSMISSION SYSTEM 570 11.3 ANALYSIS OF THE
TRANSMISSION-LINE DYNAMICS INCLUDING DISTRIBUTED CONSTANTS AND LINE
LOSSES 571 XIV CONTENTS 11.4 TRANSMISSION-SYSTEM EQUATIONS (POWER
BALANCE)*MODEIS FOR THE G SET USING TIME DELAYS TO REPRESENT PARTIAL
DIFFERENTIAL EQUATIONS 576 11.4.1 TRANSIENTS IN THE G SET 577 11.5
POWER-SYSTEM DYNAMIC MODEIS 577 11.5.1 SOME DETAILS AND THE PRECISION OF
THE MODEL; AVAILABLE APPROXIMATIONS 578 11.5.2 RLC-CIRCUIT APPROXIMATION
579 11.5.3 LIMITATIONS IMPOSED BY THE TIME-VARYING PHASORS 583 11.6
CHAPTER SUMMARY 586 III CONTROL AND STABILIZATION 589 12 PRIMARY CONTROL
OF ELECTRIC POWER SYSTEMS 591 12.1 AVAILABLE TYPES OF PRIMARY-CONTROL
DEVICES 592 12.1.1 TIME-SCALE-SEPARATION-BASED CLASSIFICATION 593 12.2
GENERATION-BASED PRIMARY CONTROL UNDER NORMAL OPERATION 594 12.2.1 FAST
CONTINUOUS PRIMARY CONTROLLERS 594 12.2.2 GENERATOR-BASED CONTROL AS A
FULL-STATE OPTIMAL CONTROL-DESIGN PROBLEM 601 12.3 GENERATION CONTROL OF
POWER SYSTEMS UNDER STRESS 604 12.3.1 REMAINING CHALLENGES IN DESIGNING
PRIMARY CONTROL OF GENERATORS 605 12.3.2 NONLINEAR CONTROL DESIGN FOR
GENERATORS 610 12.4 FACTS-BASED TRANSMISSION SYSTEM CONTROL 618 12.4.1
STATIC VAR COMPENSATOR AS A CONTROL MEANS 619 12.5 LOAD-BASED CONTROL
631 12.6 MECHANICALLY SWITCHED CONTROL 631 12.6.1 MODELING OF
SWITCHED-CONTROL-DRIVEN VOLTAGE CHANGES 632 12.7 CHAPTER SUMMARY 634 13
STATIONARY GENERATION CONTROL (IGNORING CONGESTION) 641 13.1 PRINCIPLES
OF OPERATION OF THE LARGE INTERCONNECTED SYSTEM BY DECISION AND CONTROL
642 13.1.1 SOME DETAILS OF THE DECISION AND CONTROL PHASES 643 13.2
BASIC STRUCTURE OF THE GENERATION-DISPATCH CONTROL 647 13.2.1 BASIS FOR
HIERARCHIES IN REGULATED GENERATION CONTROL 655 CONTENTS 13.2.2 BASIS
FOR HIERARCHIES IN DEREGULATED GENERATION CONTROL 657 13.3
GENERATION-DISPATCH ECONOMY 659 13.3.1 GENERATION DISPATCH IN THE
REGULATED INDUSTRY 661 13.3.2 GENERATION DISPATCH IN THE DEREGULATED
INDUSTRY 668 13.4 GENERATION-BASED FREQUENCY CONTROL 676 13.4.1
FREQUENCY CONTROL IN THE REGULATED INDUSTRY 677 13.4.2 FREQUENCY CONTROL
IN THE DEREGULATED INDUSTRY 697 13.5 REACTIVE-POWER DISPATCH ECONOMY 715
13.5.1 REACTIVE-POWER DISPATCH IN REGULATED INDUSTRY 716 13.5.2
REACTIVE-POWER DISPATCH IN THE DEREGULATED INDUSTRY 720 13.6
GENERATION-BASED VOLTAGE CONTROL 727 13.6.1 VOLTAGE CONTROL IN THE
REGULATED INDUSTRY 728 13.6.2 PS AND Q-V CONTROL: SIMILARITIES AND
DIFFERENCES 742 13.7 CHAPTER SUMMARY 743 APPENDIX 13.1 STRUCTURE-BASED
RNODELING FOR HIERARCHICAL CONTROL DESIGN 749 APPENDIX 13.2
STRUCTURE-BASED HIERARCHICAL CONTROL DESIGN 752 14 STATIONARY GENERATION
CONTROL (WITH CONGESTION) 757 14.1 METHODS FOR TRANSMISSION CONGESTION
FLOW CONTROL 759 14.1.1 TRANSMISSION LINE FLOW (CONGESTION) CONTROL IN
REGULATED INDUSTRY 760 14.1.2 TRANSMISSION LINE FLOW (CONGESTION)
MANAGEMENT IN DEREGULATED INDUSTRY 764 14.2 RE-EXAMINATION OF VOLTAGE
CONTROL 778 14.3 METHODS FOR EFFICIENT CONGESTION CONTROL IN VERY LARGE
POWER SYSTEMS 77G 14.3.1 MONITORING TESTS FOR DETERMINING THE LOCALIZED
NATURE OF VOLTAGE PROBLEMS 779 14.3.2 D VECTOR-BASED ALGORITHM 784
14.3.3 CLUSTERWIDE APPROACH WITH FUELL INFORMATION AND FLEXIBLE
CLUSTERING 797 14.4 EFFICIENT METHODS FOR CONTROLLING SYSTEMWIDE
CONGESTION 811 14.4,1 TEXTURED-MODEL ALGORITHM 811 14.5 CHAPTER SUMMARY
G!9 GUIDE TO USING THIS BOOK 824 INDEX 827
|
any_adam_object | 1 |
author | Ilic, Marija D. 1951- Zaborszky, John |
author_GND | (DE-588)124110495 |
author_facet | Ilic, Marija D. 1951- Zaborszky, John |
author_role | aut aut |
author_sort | Ilic, Marija D. 1951- |
author_variant | m d i md mdi j z jz |
building | Verbundindex |
bvnumber | BV013160252 |
classification_rvk | ZN 8520 |
classification_tum | ELT 903f |
ctrlnum | (OCoLC)444062574 (DE-599)BVBBV013160252 |
discipline | Energietechnik, Energiewirtschaft Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01509nam a2200385 c 4500</leader><controlfield tag="001">BV013160252</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20010209 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">000518s2000 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471298581</subfield><subfield code="9">0-471-29858-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)444062574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013160252</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="080" ind1=" " ind2=" "><subfield code="a">621.3</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 8520</subfield><subfield code="0">(DE-625)157630:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 903f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ilic, Marija D.</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124110495</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamics and control of large electric power systems</subfield><subfield code="c">Marija Ilić & John Zaborszky</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Wiley</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 838 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">A Wiley-Interscience publication</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Netzregelung</subfield><subfield code="0">(DE-588)4171525-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektrizitätsversorgungsnetz</subfield><subfield code="0">(DE-588)4121178-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elektrizitätsversorgungsnetz</subfield><subfield code="0">(DE-588)4121178-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Netzregelung</subfield><subfield code="0">(DE-588)4171525-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zaborszky, John</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008966572&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008966572</subfield></datafield></record></collection> |
id | DE-604.BV013160252 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:40:03Z |
institution | BVB |
isbn | 0471298581 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008966572 |
oclc_num | 444062574 |
open_access_boolean | |
owner | DE-703 DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-703 DE-91 DE-BY-TUM DE-83 |
physical | XVIII, 838 S. graph. Darst. |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Wiley |
record_format | marc |
series2 | A Wiley-Interscience publication |
spelling | Ilic, Marija D. 1951- Verfasser (DE-588)124110495 aut Dynamics and control of large electric power systems Marija Ilić & John Zaborszky New York [u.a.] Wiley 2000 XVIII, 838 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier A Wiley-Interscience publication Netzregelung (DE-588)4171525-1 gnd rswk-swf Elektrizitätsversorgungsnetz (DE-588)4121178-9 gnd rswk-swf Elektrizitätsversorgungsnetz (DE-588)4121178-9 s Netzregelung (DE-588)4171525-1 s DE-604 Zaborszky, John Verfasser aut GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008966572&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Ilic, Marija D. 1951- Zaborszky, John Dynamics and control of large electric power systems Netzregelung (DE-588)4171525-1 gnd Elektrizitätsversorgungsnetz (DE-588)4121178-9 gnd |
subject_GND | (DE-588)4171525-1 (DE-588)4121178-9 |
title | Dynamics and control of large electric power systems |
title_auth | Dynamics and control of large electric power systems |
title_exact_search | Dynamics and control of large electric power systems |
title_full | Dynamics and control of large electric power systems Marija Ilić & John Zaborszky |
title_fullStr | Dynamics and control of large electric power systems Marija Ilić & John Zaborszky |
title_full_unstemmed | Dynamics and control of large electric power systems Marija Ilić & John Zaborszky |
title_short | Dynamics and control of large electric power systems |
title_sort | dynamics and control of large electric power systems |
topic | Netzregelung (DE-588)4171525-1 gnd Elektrizitätsversorgungsnetz (DE-588)4121178-9 gnd |
topic_facet | Netzregelung Elektrizitätsversorgungsnetz |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008966572&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT ilicmarijad dynamicsandcontroloflargeelectricpowersystems AT zaborszkyjohn dynamicsandcontroloflargeelectricpowersystems |