Domain perturbations and capacity in general Hilbert spaces and applications to spectral theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
2000
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | VI, 111 S. |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV013157924 | ||
003 | DE-604 | ||
005 | 20000605 | ||
007 | t | ||
008 | 000517s2000 m||| 00||| eng d | ||
016 | 7 | |a 958893969 |2 DE-101 | |
035 | |a (OCoLC)247617203 | ||
035 | |a (DE-599)BVBBV013157924 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-355 |a DE-83 |a DE-188 | ||
084 | |a MAT 474d |2 stub | ||
084 | |a MAT 463d |2 stub | ||
100 | 1 | |a Noll, André |e Verfasser |4 aut | |
245 | 1 | 0 | |a Domain perturbations and capacity in general Hilbert spaces and applications to spectral theory |c vorgelegt von André Noll |
264 | 1 | |c 2000 | |
300 | |a VI, 111 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
502 | |a Clausthal, Techn. Univ., Diss., 2000 | ||
650 | 0 | 7 | |a Störungstheorie |0 (DE-588)4128420-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hilbert-Raum |0 (DE-588)4159850-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Selbstadjungierter Operator |0 (DE-588)4180810-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kapazität |g Mathematik |0 (DE-588)4163239-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eigenwert |0 (DE-588)4151200-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Störungstheorie |0 (DE-588)4128420-3 |D s |
689 | 0 | 1 | |a Hilbert-Raum |0 (DE-588)4159850-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Hilbert-Raum |0 (DE-588)4159850-7 |D s |
689 | 1 | 1 | |a Selbstadjungierter Operator |0 (DE-588)4180810-1 |D s |
689 | 1 | 2 | |a Eigenwert |0 (DE-588)4151200-5 |D s |
689 | 1 | 3 | |a Störungstheorie |0 (DE-588)4128420-3 |D s |
689 | 1 | 4 | |a Kapazität |g Mathematik |0 (DE-588)4163239-4 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008965199&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-008965199 |
Datensatz im Suchindex
_version_ | 1807864971356274688 |
---|---|
adam_text |
CONTENTS
1
THE
SIGNIFICANCE
OF
THE
BOTTOM
EIGENVALUE
IN
MATHEMATICAL
PHYSICS
1
1.1
PRELIMINARIES
ON
THE
DIRICHLET
LAPLACIAN
ON
A
BOUNDED
DOMAIN
2
1.2
INTERPRETATION
OF
THE
BOTTOM
EIGENVALUE
FOR
THE
HEAT
EQUATION
3
1.3
THE
SIGNIFICANCE
OF
THE
BOTTOM
EIGENVALUE
IN
QUANTUM
MECHANICS
4
1.4
DOMAIN
PERTURBATIONS
IN
MATHEMATICAL
PHYSICS
.
6
2
DEFINING
OF
OPERATORS
BY
QUADRATIC
FORMS
7
2.1
THE
ONE-TO-ONE
CORRESPONDENCE
BETWEEN
QUADRATIC
FORMS
AND
SELF-ADJOINT
OPERATORS
.
7
2.2
ADVANTAGES
OF
THE
QUADRATIC
FORM
TECHNIQUE
.
10
3
DOMAIN
PERTURBATIONS
12
3.1
THE
L
2
-CASE
.
13
3.2
THE
GENERAL
HILBERT
SPACE
CASE
.
15
3.3
DEFINING
DOMAIN
PERTURBATIONS
BY
MEANS
OF
THE
ASSOCIATED
STOCHASTIC
PROCESS
.
21
3.4
PRELIMINARY
REMARKS
ON
THE
SPECTRUM
OF
THE
PERTURBED
OPERATOR
23
4
SEVERAL
APPROACHES
TO
CAPACITY
24
4.1
DEFINITION
OF
THE
ELECTROSTATIC
CAPACITY
.
25
4.2
THE
CAPACITY
OF
A
REGULAR
DIRICHLET
FORM
.
27
4.3
CAPACITY
IN
GENERAL
HILBERT
SPACES
.
31
4.4
OTHER
CAPACITIES
.
35
4.4.1
THE
CAPACITY
OF
A
NON-REGULAR,
NON-SYMMETRIC
DIRICHLET
FORM
.
35
4.4.2
CAPACITIES
ON
IC*
.
37
5
CAPACITARY
ESTIMATES
FOR
DOMAIN
PERTURBATIONS
39
5.1
UPPER
BOUNDS
FOR
THE
BOTTOM
EIGENVALUE
.
40
5.1.1
THE
GROUND-STATE
TRANSFORMATION
.
42
5.1.2
AN
UPPER
BOUND
IN
THE
GENERAL
HILBERT
SPACE
SETTING
.
46
5.2
LOWER
BOUNDS
FOR
THE
BOTTOM
EIGENVALUE
.
50
5.3
HIGHER
EIGENVALUES
.
55
5.4
ADDITIVE
PERTURBATIONS
.
63
5.5
OPERATORS
WITH
SPECTRAL
BOUND
OF
ARBITRARY
TYPE
.
65
6
APPLICATIONS
TO
DIFFERENTIAL
OPERATORS
OF
ARBITRARY
ORDER
67
6.1
CAPACITARY
EIGENVALUE
ESTIMATES
FOR
DOMAIN
PERTURBATIONS
OF
DIFFERENTIAL
OPERATORS
.
68
6.2
STUMMEL
CLASS
PERTURBATIONS
.
72
7
SCALING
METHODS
74
7.1
THE
SCALING
PROPERTY
OF
THE
CLASSICAL
ZERO-ORDER
CAPACITY
IN
IT*
75
7.2
THE
ZERO-ORDER
CAPACITY
IN
THE
GENERAL
HILBERT
SPACE
SETTING
.
.
77
7.3
SCALING
INVARIANCE
OF
EIGENVALUE
ESTIMATES
.
81
8
OPEN
PROBLEMS
85
A
APPENDIX
88
A.L
THE
MINIMAX
PRINCIPLE
.
88
A.
2
SOBOLEV
SPACES
OF
FRACTIONAL
ORDER
AND
THE
ELLIPTIC
REGULARITY
THEOREM
.
88
A.3
MARKOV
PROCESSES
AND
HUNT
PROCESSES
.
90
A.4
BASICS
ON
REGULAR
DIRICHLET
FORMS
.
95
V
REFERENCES
103
INDEX
109
LIST
OF
FIGURES
1
DOMAIN
PERTURBATIONS
.
6
2
THE
FUNCTION
V
N
FOR
N
=
5
AND
XJ
=
J
.
11
3
A
DOMAIN
WITH
AJ
=
63
VI |
any_adam_object | 1 |
author | Noll, André |
author_facet | Noll, André |
author_role | aut |
author_sort | Noll, André |
author_variant | a n an |
building | Verbundindex |
bvnumber | BV013157924 |
classification_tum | MAT 474d MAT 463d |
ctrlnum | (OCoLC)247617203 (DE-599)BVBBV013157924 |
discipline | Mathematik |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV013157924</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20000605</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">000517s2000 m||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">958893969</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)247617203</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013157924</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 474d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 463d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Noll, André</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Domain perturbations and capacity in general Hilbert spaces and applications to spectral theory</subfield><subfield code="c">vorgelegt von André Noll</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VI, 111 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="a">Clausthal, Techn. Univ., Diss., 2000</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Störungstheorie</subfield><subfield code="0">(DE-588)4128420-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Selbstadjungierter Operator</subfield><subfield code="0">(DE-588)4180810-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kapazität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4163239-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eigenwert</subfield><subfield code="0">(DE-588)4151200-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Störungstheorie</subfield><subfield code="0">(DE-588)4128420-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Selbstadjungierter Operator</subfield><subfield code="0">(DE-588)4180810-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Eigenwert</subfield><subfield code="0">(DE-588)4151200-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Störungstheorie</subfield><subfield code="0">(DE-588)4128420-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="4"><subfield code="a">Kapazität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4163239-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008965199&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008965199</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV013157924 |
illustrated | Not Illustrated |
indexdate | 2024-08-20T00:39:49Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008965199 |
oclc_num | 247617203 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-355 DE-BY-UBR DE-83 DE-188 |
owner_facet | DE-91 DE-BY-TUM DE-355 DE-BY-UBR DE-83 DE-188 |
physical | VI, 111 S. |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
record_format | marc |
spelling | Noll, André Verfasser aut Domain perturbations and capacity in general Hilbert spaces and applications to spectral theory vorgelegt von André Noll 2000 VI, 111 S. txt rdacontent n rdamedia nc rdacarrier Clausthal, Techn. Univ., Diss., 2000 Störungstheorie (DE-588)4128420-3 gnd rswk-swf Hilbert-Raum (DE-588)4159850-7 gnd rswk-swf Selbstadjungierter Operator (DE-588)4180810-1 gnd rswk-swf Kapazität Mathematik (DE-588)4163239-4 gnd rswk-swf Eigenwert (DE-588)4151200-5 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Störungstheorie (DE-588)4128420-3 s Hilbert-Raum (DE-588)4159850-7 s DE-604 Selbstadjungierter Operator (DE-588)4180810-1 s Eigenwert (DE-588)4151200-5 s Kapazität Mathematik (DE-588)4163239-4 s DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008965199&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Noll, André Domain perturbations and capacity in general Hilbert spaces and applications to spectral theory Störungstheorie (DE-588)4128420-3 gnd Hilbert-Raum (DE-588)4159850-7 gnd Selbstadjungierter Operator (DE-588)4180810-1 gnd Kapazität Mathematik (DE-588)4163239-4 gnd Eigenwert (DE-588)4151200-5 gnd |
subject_GND | (DE-588)4128420-3 (DE-588)4159850-7 (DE-588)4180810-1 (DE-588)4163239-4 (DE-588)4151200-5 (DE-588)4113937-9 |
title | Domain perturbations and capacity in general Hilbert spaces and applications to spectral theory |
title_auth | Domain perturbations and capacity in general Hilbert spaces and applications to spectral theory |
title_exact_search | Domain perturbations and capacity in general Hilbert spaces and applications to spectral theory |
title_full | Domain perturbations and capacity in general Hilbert spaces and applications to spectral theory vorgelegt von André Noll |
title_fullStr | Domain perturbations and capacity in general Hilbert spaces and applications to spectral theory vorgelegt von André Noll |
title_full_unstemmed | Domain perturbations and capacity in general Hilbert spaces and applications to spectral theory vorgelegt von André Noll |
title_short | Domain perturbations and capacity in general Hilbert spaces and applications to spectral theory |
title_sort | domain perturbations and capacity in general hilbert spaces and applications to spectral theory |
topic | Störungstheorie (DE-588)4128420-3 gnd Hilbert-Raum (DE-588)4159850-7 gnd Selbstadjungierter Operator (DE-588)4180810-1 gnd Kapazität Mathematik (DE-588)4163239-4 gnd Eigenwert (DE-588)4151200-5 gnd |
topic_facet | Störungstheorie Hilbert-Raum Selbstadjungierter Operator Kapazität Mathematik Eigenwert Hochschulschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008965199&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT nollandre domainperturbationsandcapacityingeneralhilbertspacesandapplicationstospectraltheory |