Learning with recurrent neural networks:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
London u.a.
Springer
2000
|
Schriftenreihe: | Lecture notes in control and information sciences
254 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | X, 148 S. graph. Darst. |
ISBN: | 185233343X |
Internformat
MARC
LEADER | 00000nam a22000008cb4500 | ||
---|---|---|---|
001 | BV013153244 | ||
003 | DE-604 | ||
005 | 20190425 | ||
007 | t | ||
008 | 000509s2000 gw d||| |||| 00||| eng d | ||
016 | 7 | |a 958953635 |2 DE-101 | |
020 | |a 185233343X |c : DM 118.00 |9 1-85233-343-X | ||
035 | |a (OCoLC)44013868 | ||
035 | |a (DE-599)BVBBV013153244 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-739 |a DE-473 |a DE-706 |a DE-634 |a DE-83 | ||
050 | 0 | |a QA76.87. | |
082 | 0 | |a 006.3/2 |2 21 | |
084 | |a SI 845 |0 (DE-625)143198: |2 rvk | ||
100 | 1 | |a Hammer, Barbara |d 1970- |e Verfasser |0 (DE-588)13377435X |4 aut | |
245 | 1 | 0 | |a Learning with recurrent neural networks |c Barbara Hammer |
264 | 1 | |a London u.a. |b Springer |c 2000 | |
300 | |a X, 148 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in control and information sciences |v 254 | |
650 | 7 | |a Neurale netwerken |2 gtt | |
650 | 7 | |a Réseaux neuronaux (Informatique) |2 ram | |
650 | 4 | |a Neural networks (Computer science) | |
650 | 0 | 7 | |a NP-vollständiges Problem |0 (DE-588)4138229-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Rekursives neuronales Netz |0 (DE-588)4379549-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Rekursives neuronales Netz |0 (DE-588)4379549-3 |D s |
689 | 1 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 1 | 2 | |a NP-vollständiges Problem |0 (DE-588)4138229-8 |D s |
689 | 1 | |5 DE-604 | |
830 | 0 | |a Lecture notes in control and information sciences |v 254 |w (DE-604)BV005848579 |9 254 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008961953&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-008961953 |
Datensatz im Suchindex
_version_ | 1807322954744201216 |
---|---|
adam_text |
TABLE
OF
CONTENTS
1.
INTRODUCTION
.
1
2.
RECURRENT
AND
FOLDING
NETWORKS
.
5
2.1
DEFINITIONS
.
5
2.2
TRAINING
.
11
2.3
BACKGROUND
.
13
2.4
APPLICATIONS
.
15
2.4.1
TERM
CLASSIFICATION
.
15
2.4.2
LEARNING
TREE
AUTOMATA
.
15
2.4.3
CONTROL
OF
SEARCH
HEURISTICS
FOR
AUTOMATED
DEDUCTION
16
2.4.4
CLASSIFICATION
OF
CHEMICAL
DATA
.
16
2.4.5
LOGO
CLASSIFICATION
.
18
3.
APPROXIMATION
ABILITY
.
19
3.1
FOUNDATIONS
.
20
3.2
APPROXIMATION
IN
PROBABILITY
.
25
3.2.1
INTERPOLATION
OF
A
FINITE
SET
OF
DATA
.
25
3.2.2
APPROXIMATION
OF
A
MAPPING
IN
PROBABILITY
.
30
3.2.3
INTERPOLATION
WITH
A
=
H
.
35
3.3
APPROXIMATION
IN
THE
MAXIMUM
NORM
.
36
3.3.1
NEGATIVE
EXAMPLES
.
36
3.3.2
APPROXIMATION
ON
UNARY
SEQUENCES
.
39
3.3.3
NOISY
COMPUTATION
.
44
3.3.4
APPROXIMATION
ON
A
FINITE
TIME
INTERVAL
.
46
3.4
DISCUSSION
AND
OPEN
QUESTIONS
.
48
4.
LEARNABILITY
.
51
4.1
THE
LEARNING
SCENARIO
.
53
4.1.1
DISTRIBUTION-DEPENDENT,
MODEL-DEPENDENT
LEARNING
.
54
4.1.2
DISTRIBUTION-INDEPENDENT,
MODEL-DEPENDENT
LEARNING
.
57
4.1.3
MODEL-FREE
LEARNING
.
58
4.1.4
DEALING
WITH
INFINITE
CAPACITY
.
60
4.1.5
VC-DIMENSION
OF
NEURAL
NETWORKS
.
62
4.2
PAC
LEARNABILITY
.
63
X
TABLE
OF
CONTENTS
4.2.1
DISTRIBUTION-DEPENDENT
LEARNING
.
63
4.2.2
SCALE
SENSITIVE
TERMS
.
66
4.2.3
NOISY
DATA
.
70
4.2.4
MODEL-FREE
LEARNING
.
74
4.2.5
DEALING
WITH
INFINITE
CAPACITY
.
75
4.3
BOUNDS
ON
THE
VC-DIMENSION
OF
FOLDING
NETWORKS
.
79
4.3.1
TECHNICAL
DETAILS
.
79
4.3.2
ESTIMATION
OF
THE
VC-DIMENSION
.
83
4.3.3
LOWER
BOUNDS
ON
FAT
YY
(F)
.
89
4.4
CONSEQUENCES
FOR
LEARNABILITY
.
93
4.5
LOWER
BOUNDS
FOR
THE
LRAAM
.
97
4.6
DISCUSSION
AND
OPEN
QUESTIONS
.
98
5.
COMPLEXITY
.
103
5.1
THE
LOADING
PROBLEM
.
105
5.2
THE
PERCEPTRON
CASE
.
110
5.2.1
POLYNOMIAL
SITUATIONS
.
110
5.2.2
NP-RESULTS
.
113
5.3
THE
SIGMOIDAL
CASE
.
122
5.4
DISCUSSION
AND
OPEN
QUESTIONS
.
130
6.
CONCLUSION
.
133
BIBLIOGRAPHY
.
137
INDEX
.
145 |
any_adam_object | 1 |
author | Hammer, Barbara 1970- |
author_GND | (DE-588)13377435X |
author_facet | Hammer, Barbara 1970- |
author_role | aut |
author_sort | Hammer, Barbara 1970- |
author_variant | b h bh |
building | Verbundindex |
bvnumber | BV013153244 |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.87. |
callnumber-search | QA76.87. |
callnumber-sort | QA 276.87 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 845 |
ctrlnum | (OCoLC)44013868 (DE-599)BVBBV013153244 |
dewey-full | 006.3/2 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/2 |
dewey-search | 006.3/2 |
dewey-sort | 16.3 12 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000008cb4500</leader><controlfield tag="001">BV013153244</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190425</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">000509s2000 gw d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">958953635</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">185233343X</subfield><subfield code="c">: DM 118.00</subfield><subfield code="9">1-85233-343-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)44013868</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013153244</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.87.</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/2</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 845</subfield><subfield code="0">(DE-625)143198:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hammer, Barbara</subfield><subfield code="d">1970-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13377435X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning with recurrent neural networks</subfield><subfield code="c">Barbara Hammer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London u.a.</subfield><subfield code="b">Springer</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 148 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in control and information sciences</subfield><subfield code="v">254</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neurale netwerken</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Réseaux neuronaux (Informatique)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">NP-vollständiges Problem</subfield><subfield code="0">(DE-588)4138229-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rekursives neuronales Netz</subfield><subfield code="0">(DE-588)4379549-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Rekursives neuronales Netz</subfield><subfield code="0">(DE-588)4379549-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">NP-vollständiges Problem</subfield><subfield code="0">(DE-588)4138229-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in control and information sciences</subfield><subfield code="v">254</subfield><subfield code="w">(DE-604)BV005848579</subfield><subfield code="9">254</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008961953&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008961953</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV013153244 |
illustrated | Illustrated |
indexdate | 2024-08-14T01:04:42Z |
institution | BVB |
isbn | 185233343X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008961953 |
oclc_num | 44013868 |
open_access_boolean | |
owner | DE-739 DE-473 DE-BY-UBG DE-706 DE-634 DE-83 |
owner_facet | DE-739 DE-473 DE-BY-UBG DE-706 DE-634 DE-83 |
physical | X, 148 S. graph. Darst. |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer |
record_format | marc |
series | Lecture notes in control and information sciences |
series2 | Lecture notes in control and information sciences |
spelling | Hammer, Barbara 1970- Verfasser (DE-588)13377435X aut Learning with recurrent neural networks Barbara Hammer London u.a. Springer 2000 X, 148 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Lecture notes in control and information sciences 254 Neurale netwerken gtt Réseaux neuronaux (Informatique) ram Neural networks (Computer science) NP-vollständiges Problem (DE-588)4138229-8 gnd rswk-swf Neuronales Netz (DE-588)4226127-2 gnd rswk-swf Rekursives neuronales Netz (DE-588)4379549-3 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf 1\p (DE-588)4113937-9 Hochschulschrift gnd-content Maschinelles Lernen (DE-588)4193754-5 s Neuronales Netz (DE-588)4226127-2 s DE-604 Rekursives neuronales Netz (DE-588)4379549-3 s NP-vollständiges Problem (DE-588)4138229-8 s Lecture notes in control and information sciences 254 (DE-604)BV005848579 254 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008961953&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hammer, Barbara 1970- Learning with recurrent neural networks Lecture notes in control and information sciences Neurale netwerken gtt Réseaux neuronaux (Informatique) ram Neural networks (Computer science) NP-vollständiges Problem (DE-588)4138229-8 gnd Neuronales Netz (DE-588)4226127-2 gnd Rekursives neuronales Netz (DE-588)4379549-3 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4138229-8 (DE-588)4226127-2 (DE-588)4379549-3 (DE-588)4193754-5 (DE-588)4113937-9 |
title | Learning with recurrent neural networks |
title_auth | Learning with recurrent neural networks |
title_exact_search | Learning with recurrent neural networks |
title_full | Learning with recurrent neural networks Barbara Hammer |
title_fullStr | Learning with recurrent neural networks Barbara Hammer |
title_full_unstemmed | Learning with recurrent neural networks Barbara Hammer |
title_short | Learning with recurrent neural networks |
title_sort | learning with recurrent neural networks |
topic | Neurale netwerken gtt Réseaux neuronaux (Informatique) ram Neural networks (Computer science) NP-vollständiges Problem (DE-588)4138229-8 gnd Neuronales Netz (DE-588)4226127-2 gnd Rekursives neuronales Netz (DE-588)4379549-3 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Neurale netwerken Réseaux neuronaux (Informatique) Neural networks (Computer science) NP-vollständiges Problem Neuronales Netz Rekursives neuronales Netz Maschinelles Lernen Hochschulschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008961953&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV005848579 |
work_keys_str_mv | AT hammerbarbara learningwithrecurrentneuralnetworks |