Numerik symmetrischer Matrizen: mit 49 Beispielen
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Leipzig
Teubner
1969
|
Schlagworte: | |
Beschreibung: | NST: Matrizen-Numerik |
Beschreibung: | 243 S. graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV013140814 | ||
003 | DE-604 | ||
005 | 20000602 | ||
007 | t | ||
008 | 000509s1969 d||| |||| 00||| ger d | ||
035 | |a (OCoLC)907762824 | ||
035 | |a (DE-599)BVBBV013140814 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a ger | |
049 | |a DE-210 | ||
100 | 1 | |a Schwarz, Hans R. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Numerik symmetrischer Matrizen |b mit 49 Beispielen |c von H. R. Schwarz |
246 | 1 | 3 | |a Matrizen-Numerik |
264 | 1 | |a Leipzig |b Teubner |c 1969 | |
300 | |a 243 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a NST: Matrizen-Numerik | ||
650 | 0 | 7 | |a Matrix |g Mathematik |0 (DE-588)4037968-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Matrizenalgebra |0 (DE-588)4139347-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare Algebra |0 (DE-588)4035811-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symmetrische Matrix |0 (DE-588)4314057-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eigenwertproblem |0 (DE-588)4013802-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerische Mathematik |0 (DE-588)4042805-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Symmetrische Matrix |0 (DE-588)4314057-9 |D s |
689 | 0 | 1 | |a Matrizenalgebra |0 (DE-588)4139347-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Matrix |g Mathematik |0 (DE-588)4037968-1 |D s |
689 | 1 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 2 | 1 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
689 | 3 | 0 | |a Eigenwertproblem |0 (DE-588)4013802-1 |D s |
689 | 3 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 3 | |8 3\p |5 DE-604 | |
689 | 4 | 0 | |a Symmetrische Matrix |0 (DE-588)4314057-9 |D s |
689 | 4 | 1 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 4 | |8 4\p |5 DE-604 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-008952500 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804127839512952832 |
---|---|
any_adam_object | |
author | Schwarz, Hans R. |
author_facet | Schwarz, Hans R. |
author_role | aut |
author_sort | Schwarz, Hans R. |
author_variant | h r s hr hrs |
building | Verbundindex |
bvnumber | BV013140814 |
ctrlnum | (OCoLC)907762824 (DE-599)BVBBV013140814 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02278nam a2200577 c 4500</leader><controlfield tag="001">BV013140814</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20000602 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">000509s1969 d||| |||| 00||| ger d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)907762824</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013140814</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-210</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schwarz, Hans R.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerik symmetrischer Matrizen</subfield><subfield code="b">mit 49 Beispielen</subfield><subfield code="c">von H. R. Schwarz</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Matrizen-Numerik</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Leipzig</subfield><subfield code="b">Teubner</subfield><subfield code="c">1969</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">243 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">NST: Matrizen-Numerik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrix</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4037968-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrizenalgebra</subfield><subfield code="0">(DE-588)4139347-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetrische Matrix</subfield><subfield code="0">(DE-588)4314057-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eigenwertproblem</subfield><subfield code="0">(DE-588)4013802-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Symmetrische Matrix</subfield><subfield code="0">(DE-588)4314057-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Matrizenalgebra</subfield><subfield code="0">(DE-588)4139347-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Matrix</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4037968-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Eigenwertproblem</subfield><subfield code="0">(DE-588)4013802-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Symmetrische Matrix</subfield><subfield code="0">(DE-588)4314057-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="1"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008952500</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV013140814 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:39:44Z |
institution | BVB |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008952500 |
oclc_num | 907762824 |
open_access_boolean | |
owner | DE-210 |
owner_facet | DE-210 |
physical | 243 S. graph. Darst. |
publishDate | 1969 |
publishDateSearch | 1969 |
publishDateSort | 1969 |
publisher | Teubner |
record_format | marc |
spelling | Schwarz, Hans R. Verfasser aut Numerik symmetrischer Matrizen mit 49 Beispielen von H. R. Schwarz Matrizen-Numerik Leipzig Teubner 1969 243 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier NST: Matrizen-Numerik Matrix Mathematik (DE-588)4037968-1 gnd rswk-swf Matrizenalgebra (DE-588)4139347-8 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Lineare Algebra (DE-588)4035811-2 gnd rswk-swf Symmetrische Matrix (DE-588)4314057-9 gnd rswk-swf Eigenwertproblem (DE-588)4013802-1 gnd rswk-swf Numerische Mathematik (DE-588)4042805-9 gnd rswk-swf Symmetrische Matrix (DE-588)4314057-9 s Matrizenalgebra (DE-588)4139347-8 s DE-604 Matrix Mathematik (DE-588)4037968-1 s Numerisches Verfahren (DE-588)4128130-5 s 1\p DE-604 Numerische Mathematik (DE-588)4042805-9 s Lineare Algebra (DE-588)4035811-2 s 2\p DE-604 Eigenwertproblem (DE-588)4013802-1 s 3\p DE-604 4\p DE-604 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Schwarz, Hans R. Numerik symmetrischer Matrizen mit 49 Beispielen Matrix Mathematik (DE-588)4037968-1 gnd Matrizenalgebra (DE-588)4139347-8 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Lineare Algebra (DE-588)4035811-2 gnd Symmetrische Matrix (DE-588)4314057-9 gnd Eigenwertproblem (DE-588)4013802-1 gnd Numerische Mathematik (DE-588)4042805-9 gnd |
subject_GND | (DE-588)4037968-1 (DE-588)4139347-8 (DE-588)4128130-5 (DE-588)4035811-2 (DE-588)4314057-9 (DE-588)4013802-1 (DE-588)4042805-9 |
title | Numerik symmetrischer Matrizen mit 49 Beispielen |
title_alt | Matrizen-Numerik |
title_auth | Numerik symmetrischer Matrizen mit 49 Beispielen |
title_exact_search | Numerik symmetrischer Matrizen mit 49 Beispielen |
title_full | Numerik symmetrischer Matrizen mit 49 Beispielen von H. R. Schwarz |
title_fullStr | Numerik symmetrischer Matrizen mit 49 Beispielen von H. R. Schwarz |
title_full_unstemmed | Numerik symmetrischer Matrizen mit 49 Beispielen von H. R. Schwarz |
title_short | Numerik symmetrischer Matrizen |
title_sort | numerik symmetrischer matrizen mit 49 beispielen |
title_sub | mit 49 Beispielen |
topic | Matrix Mathematik (DE-588)4037968-1 gnd Matrizenalgebra (DE-588)4139347-8 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Lineare Algebra (DE-588)4035811-2 gnd Symmetrische Matrix (DE-588)4314057-9 gnd Eigenwertproblem (DE-588)4013802-1 gnd Numerische Mathematik (DE-588)4042805-9 gnd |
topic_facet | Matrix Mathematik Matrizenalgebra Numerisches Verfahren Lineare Algebra Symmetrische Matrix Eigenwertproblem Numerische Mathematik |
work_keys_str_mv | AT schwarzhansr numeriksymmetrischermatrizenmit49beispielen AT schwarzhansr matrizennumerik |