Topology, geometry, and Gauge fields: interactions
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Springer
2000
|
Schriftenreihe: | Applied mathematical sciences
141 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIII, 443 S. graph. Darst. |
ISBN: | 0387989471 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV013112723 | ||
003 | DE-604 | ||
005 | 20010314 | ||
007 | t | ||
008 | 000417s2000 d||| |||| 00||| eng d | ||
016 | 7 | |a 959137378 |2 DE-101 | |
020 | |a 0387989471 |9 0-387-98947-1 | ||
035 | |a (OCoLC)247822955 | ||
035 | |a (DE-599)BVBBV013112723 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-29T |a DE-898 |a DE-355 |a DE-91G |a DE-83 |a DE-11 | ||
050 | 0 | |a QA1 | |
050 | 0 | |a QC20.7.T65 | |
082 | 0 | |a 510 | |
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a PHY 417f |2 stub | ||
084 | |a MAT 550f |2 stub | ||
084 | |a MAT 554f |2 stub | ||
084 | |a MAT 530f |2 stub | ||
084 | |a PHY 014f |2 stub | ||
100 | 1 | |a Naber, Gregory L. |d 1948- |e Verfasser |0 (DE-588)113221207 |4 aut | |
245 | 1 | 0 | |a Topology, geometry, and Gauge fields |b interactions |c Gregory L. Naber |
264 | 1 | |a New York [u.a.] |b Springer |c 2000 | |
300 | |a XIII, 443 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Applied mathematical sciences |v 141 | |
650 | 4 | |a Eichfeld - Topologie - Geometrie | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Gauge fields (Physics) | |
650 | 4 | |a Geometry | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Topology | |
650 | 0 | 7 | |a Eichtheorie |0 (DE-588)4122125-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kohomologie |0 (DE-588)4031700-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maßtheorie |0 (DE-588)4074626-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | 1 | |a Eichtheorie |0 (DE-588)4122125-4 |D s |
689 | 0 | 2 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 0 | 3 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Kohomologie |0 (DE-588)4031700-6 |D s |
689 | 1 | 1 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 1 | 2 | |a Maßtheorie |0 (DE-588)4074626-4 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 3 | 1 | |a Eichtheorie |0 (DE-588)4122125-4 |D s |
689 | 3 | 2 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 3 | 3 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 3 | |5 DE-604 | |
689 | 4 | 0 | |a Eichtheorie |0 (DE-588)4122125-4 |D s |
689 | 4 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 4 | 2 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 4 | |5 DE-604 | |
689 | 5 | 0 | |a Eichtheorie |0 (DE-588)4122125-4 |D s |
689 | 5 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 5 | 2 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 5 | |5 DE-604 | |
830 | 0 | |a Applied mathematical sciences |v 141 |w (DE-604)BV000005274 |9 141 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008933328&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-008933328 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804127811210838016 |
---|---|
adam_text | Contents
Preface
ix
Acknowledgments
xiii
Chapter
1
Geometrical Background
1
1.1
Smooth Manifolds and Maps
1
1.2
Matrix Lie Groups
13
1.3
Principal Bundles
28
1.4
Connections and Curvature
35
1.5
Associated Bundles and Matter Fields
46
Chapter
2
Physical Motivation
53
2.1
General Framework For Classical Gauge Theories
53
2.2
Electromagnetic Fields
57
2.3
Spin Zero Electrodynamics
71
2.4
Spin One-Half Electrodynamics
84
2.5
S ř7(2)-Yang-Mills-Higgs
Theory on Rn
123
2.6
Epilogue
159
Chapter
3
Frame Bundles and
Spacetimes 161
3.1
Partitions of Unity, Riemannian Metrics and Connections
161
3.2
Continuous Versus Smooth
168
3.3
Frame Bundles
172
3.4
Minkowski Spacetime
187
3.5
Spacetime Manifolds and Spinor Structures
193
Chapter
4
Differential Forms and Integration
207
Introduction
207
4.1
Multilinear Algebra
207
4.2
Vector-Valued Forms
230
vii
viii Contents
4.3 Differential
Forms
238
4.4 The de Rham
Complex
245
4.5
Tensorial
Forms
257
4.6
Integration on Manifolds
268
4.7
Stokes Theorem
288
Chapter
5
de
Rham Cohomology
297
Introduction
297
5.1
The
de
Rham Cohomology Groups
298
5.2
Induced Homomorphisms
303
5.3
Cochain Complexes and Their Cohomology
318
5.4
The Mayer-Vietoris Sequence
324
5.5
The Cohomology of Compact,
Orientable
Manifolds
335
5.6
The
Brouwer
Degree
340
5.7
The
Hopf
Invariant
346
Chapter
6
Characteristic Classes
351
6.1
Motivation
351
6.2
Algebraic Preliminaries
355
6.3
The
Chem-
Weil Homomorphism
367
6.4
Chern Numbers
379
6.5
Жз-Сесћ
Cohomology for Smooth Manifolds
388
Appendix
A.I Seiberg-
Witten
Monopoles
on
R4
407
References
425
Symbols
431
Index
437
|
any_adam_object | 1 |
author | Naber, Gregory L. 1948- |
author_GND | (DE-588)113221207 |
author_facet | Naber, Gregory L. 1948- |
author_role | aut |
author_sort | Naber, Gregory L. 1948- |
author_variant | g l n gl gln |
building | Verbundindex |
bvnumber | BV013112723 |
callnumber-first | Q - Science |
callnumber-label | QA1 |
callnumber-raw | QA1 QC20.7.T65 |
callnumber-search | QA1 QC20.7.T65 |
callnumber-sort | QA 11 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 350 SK 950 |
classification_tum | PHY 417f MAT 550f MAT 554f MAT 530f PHY 014f |
ctrlnum | (OCoLC)247822955 (DE-599)BVBBV013112723 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03341nam a2200877 cb4500</leader><controlfield tag="001">BV013112723</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20010314 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">000417s2000 d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">959137378</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387989471</subfield><subfield code="9">0-387-98947-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)247822955</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013112723</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC20.7.T65</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 417f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 550f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 554f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 530f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 014f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Naber, Gregory L.</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113221207</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topology, geometry, and Gauge fields</subfield><subfield code="b">interactions</subfield><subfield code="c">Gregory L. Naber</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 443 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Applied mathematical sciences</subfield><subfield code="v">141</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eichfeld - Topologie - Geometrie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gauge fields (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eichtheorie</subfield><subfield code="0">(DE-588)4122125-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kohomologie</subfield><subfield code="0">(DE-588)4031700-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Eichtheorie</subfield><subfield code="0">(DE-588)4122125-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kohomologie</subfield><subfield code="0">(DE-588)4031700-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Eichtheorie</subfield><subfield code="0">(DE-588)4122125-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="2"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="3"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Eichtheorie</subfield><subfield code="0">(DE-588)4122125-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="2"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Eichtheorie</subfield><subfield code="0">(DE-588)4122125-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2="2"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Applied mathematical sciences</subfield><subfield code="v">141</subfield><subfield code="w">(DE-604)BV000005274</subfield><subfield code="9">141</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008933328&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008933328</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV013112723 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:39:17Z |
institution | BVB |
isbn | 0387989471 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008933328 |
oclc_num | 247822955 |
open_access_boolean | |
owner | DE-20 DE-29T DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-83 DE-11 |
owner_facet | DE-20 DE-29T DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-83 DE-11 |
physical | XIII, 443 S. graph. Darst. |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer |
record_format | marc |
series | Applied mathematical sciences |
series2 | Applied mathematical sciences |
spelling | Naber, Gregory L. 1948- Verfasser (DE-588)113221207 aut Topology, geometry, and Gauge fields interactions Gregory L. Naber New York [u.a.] Springer 2000 XIII, 443 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Applied mathematical sciences 141 Eichfeld - Topologie - Geometrie Mathematische Physik Gauge fields (Physics) Geometry Mathematical physics Topology Eichtheorie (DE-588)4122125-4 gnd rswk-swf Topologie (DE-588)4060425-1 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Kohomologie (DE-588)4031700-6 gnd rswk-swf Geometrie (DE-588)4020236-7 gnd rswk-swf Maßtheorie (DE-588)4074626-4 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 s Eichtheorie (DE-588)4122125-4 s Topologie (DE-588)4060425-1 s Geometrie (DE-588)4020236-7 s DE-604 Kohomologie (DE-588)4031700-6 s Mannigfaltigkeit (DE-588)4037379-4 s Maßtheorie (DE-588)4074626-4 s 1\p DE-604 Applied mathematical sciences 141 (DE-604)BV000005274 141 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008933328&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Naber, Gregory L. 1948- Topology, geometry, and Gauge fields interactions Applied mathematical sciences Eichfeld - Topologie - Geometrie Mathematische Physik Gauge fields (Physics) Geometry Mathematical physics Topology Eichtheorie (DE-588)4122125-4 gnd Topologie (DE-588)4060425-1 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Kohomologie (DE-588)4031700-6 gnd Geometrie (DE-588)4020236-7 gnd Maßtheorie (DE-588)4074626-4 gnd Mathematische Physik (DE-588)4037952-8 gnd |
subject_GND | (DE-588)4122125-4 (DE-588)4060425-1 (DE-588)4037379-4 (DE-588)4031700-6 (DE-588)4020236-7 (DE-588)4074626-4 (DE-588)4037952-8 |
title | Topology, geometry, and Gauge fields interactions |
title_auth | Topology, geometry, and Gauge fields interactions |
title_exact_search | Topology, geometry, and Gauge fields interactions |
title_full | Topology, geometry, and Gauge fields interactions Gregory L. Naber |
title_fullStr | Topology, geometry, and Gauge fields interactions Gregory L. Naber |
title_full_unstemmed | Topology, geometry, and Gauge fields interactions Gregory L. Naber |
title_short | Topology, geometry, and Gauge fields |
title_sort | topology geometry and gauge fields interactions |
title_sub | interactions |
topic | Eichfeld - Topologie - Geometrie Mathematische Physik Gauge fields (Physics) Geometry Mathematical physics Topology Eichtheorie (DE-588)4122125-4 gnd Topologie (DE-588)4060425-1 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Kohomologie (DE-588)4031700-6 gnd Geometrie (DE-588)4020236-7 gnd Maßtheorie (DE-588)4074626-4 gnd Mathematische Physik (DE-588)4037952-8 gnd |
topic_facet | Eichfeld - Topologie - Geometrie Mathematische Physik Gauge fields (Physics) Geometry Mathematical physics Topology Eichtheorie Topologie Mannigfaltigkeit Kohomologie Geometrie Maßtheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008933328&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000005274 |
work_keys_str_mv | AT nabergregoryl topologygeometryandgaugefieldsinteractions |