The art of modeling in science and engineering:
"Modeling is practiced in engineering and all physical sciences. Many specialized texts exist - written at a high level - that cover this subject. However, students and even professionals often experience difficulties in setting up and solving even the simplest of models. This can be attributed...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton, Fla. [u.a.]
Chapman & Hall/CRC
1999
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | "Modeling is practiced in engineering and all physical sciences. Many specialized texts exist - written at a high level - that cover this subject. However, students and even professionals often experience difficulties in setting up and solving even the simplest of models. This can be attributed to three factors: the proper choice of model, the absence of precise solutions, and the necessity to make suitable simplifying assumptions and approximations. Overcoming these difficulties is the focus of The Art of Modeling in Science and Engineering."--BOOK JACKET. |
Beschreibung: | 654 S. graph. Darst. |
ISBN: | 1584880120 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV013070781 | ||
003 | DE-604 | ||
005 | 20021024 | ||
007 | t | ||
008 | 000328s1999 d||| |||| 00||| eng d | ||
020 | |a 1584880120 |9 1-58488-012-0 | ||
035 | |a (OCoLC)40682437 | ||
035 | |a (DE-599)BVBBV013070781 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-29 |a DE-19 |a DE-29T |a DE-526 |a DE-634 |a DE-188 | ||
050 | 0 | |a QA401 | |
082 | 0 | |a 511/.8 |2 21 | |
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
100 | 1 | |a Basmadjian, Diran |e Verfasser |4 aut | |
245 | 1 | 0 | |a The art of modeling in science and engineering |c Diran Basmadjian |
264 | 1 | |a Boca Raton, Fla. [u.a.] |b Chapman & Hall/CRC |c 1999 | |
300 | |a 654 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 1 | |a "Modeling is practiced in engineering and all physical sciences. Many specialized texts exist - written at a high level - that cover this subject. However, students and even professionals often experience difficulties in setting up and solving even the simplest of models. This can be attributed to three factors: the proper choice of model, the absence of precise solutions, and the necessity to make suitable simplifying assumptions and approximations. Overcoming these difficulties is the focus of The Art of Modeling in Science and Engineering."--BOOK JACKET. | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Naturwissenschaft | |
650 | 4 | |a Engineering |x Mathematical models | |
650 | 4 | |a Mathematical models | |
650 | 4 | |a Science |x Mathematical models | |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Naturwissenschaften |0 (DE-588)4041421-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ingenieurwissenschaften |0 (DE-588)4137304-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ingenieurwissenschaften |0 (DE-588)4137304-2 |D s |
689 | 0 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Naturwissenschaften |0 (DE-588)4041421-8 |D s |
689 | 1 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008905291&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-008905291 |
Datensatz im Suchindex
_version_ | 1804127768529600512 |
---|---|
adam_text | Table of Contents
Chapter 1 Introduction 1
1.1 Conservation Laws and Auxiliary Relations 2
1.1.1 Conservation Laws 2
1.1.2 Auxiliary Relations 3
1.2 Properties and Categories of Balances 3
1.2.1 Dependent and Independent Variables 5
1.2.2 Integral and Differential Balances: The Role of Balance Space
and Geometry 5
1.2.3 Unsteady State Balances: The Role of Time 5
1.2.4 Steady State Balances 7
1.2.5 Dependence on Time and Space 7
1.3 Three Physical Configurations 7
1.3.1 The Stirred Tank 7
1.3.2 The One Dimensional Pipe 8
1.3.3 The Quenched Steel Billet 9
1.4 Types of ODE and AE Mass Balances 9
1.5 Information Obtained from Model Solutions 10
1.5.1 Steady State Integral Balances 10
1.5.2 Steady State One Dimensional Differential Balances 11
1.5.3 Unsteady Instantaneous Integral Balances 11
1.5.4 Unsteady Cumulative Integral Balances 11
1.5.5 Unsteady Differential Balances 12
1.5.6 Steady Multidimensional Differential Balances 12
Illustration 1.1 Design of a Gas Scrubber 13
Illustration 1.2 Flow Rate to a Heat Exchanger 14
Illustration 1.3 Fluidization of a Particle 14
Illustration 1.4 Evaporation of Water from an Open
Trough 15
Illustration 1.5 Sealing of Two Plastic Sheets 15
Illustration 1.6 Pressure Drop in a Rectangular Duct 16
Practice Problems 16
References 17
Chapter 2 The Setting Up of Balances 19
Illustration 2.1 The Surge Tank 19
Illustration 2.2 The Steam Heated Tube 22
Illustration 2.3 Design of a Gas Scrubber Revisited 24
Illustration 2.4 An Example from Industry: Decontamination
of a Nuclear Reactor Coolant 26
Illustration 2.5 Thermal Treatment of Steel Strapping 29
Illustration 2.6 Batch Filtration: The Ruth Equations 32
Illustration 2.7 Drying of a Nonporous Plastic Sheet 35
Practice Problems 38
References 42
Chapter 3 More About Mass, Energy, and Momentum Balances 45
3.1 The Terms in the Various Balances 45
3.2 Mass Balances 46
3.2.1 Molar Mass Flow in Binary Mixtures 46
3.2.2 Transport Coefficients 48
Illustration 3.2.1 Drying of a Plastic Sheet Revisited:
Estimation of the Mass Transfer Coefficient ky 52
Illustration 3.2.2 Measurement of Diffusivities by the
Two Bulb Method: The Quasi Steady State 55
3.2.3 Chemical Reaction Mass Balance 57
Illustration 3.2.3 CSTR with Second Order Homogeneous
Reaction A + B » P 57
Illustration 3.2.4 Isothermal Tubular Reactor with First
Order Homogeneous Reaction 59
Illustration 3.2.5 Isothermal Diffusion and First Order
Reaction in a Spherical, Porous Catalyst Pellet:
The Effectiveness Factor E 60
3.2.4 Tank Mass Balance 62
Illustration 3.2.6 Waste Disposal Holding Tank 63
Illustration 3.2.7 Holding Tank with Variable Holdup 64
3.2.5 Tubular Mass Balances 65
Illustration 3.2.8 Distillation in a Packed Column: The Case
of Total Reflux and Constant a 66
Illustration 3.2.9 Tubular Flow with Solute Release from
the Wall 68
Practice Problems 69
3.3 Energy Balances 71
3.3.1 Energy Flux 71
3.3.2 Transport Coefficients 72
Illustration 3.3.1 Heat Transfer Coefficient in a Packed Bed
of Metallic Particles 75
Illustration 3.3.2 The Counter Current Single Pass Shell
and Tube Heat Exchanger 76
Illustration 3.3.3 Response of a Thermocouple to a
Temperature Change 82
Illustration 3.3.4 The Longitudinal, Rectangular Heat
Exchanger Fin 83
Illustration 3.3.5 A Moving Bed Solid Gas Heat
Exchanger 86
Illustration 3.3.6 Conduction Through a Hollow Cylinder:
Optimum Insulation Thickness 89
Illustration 3.3.7 Heat Up Time of an Unstirred Tank 92
Illustration 3.3.8 The Boiling Pot 94
Illustration 3.3.9 Melting of a Silver Sample: Radiation 96
Illustration 3.3.10 Adiabatic Compression of an Ideal Gas:
Energy Balance for Closed Systems: First Law of
Thermodynamics 99
Illustration 3.3.11 The Steady State Energy Balance for
Flowing (Open) Systems 101
Illustration 3.3.12 A Moving Boundary Problem:
Freeze Drying of Food 102
Practice Problems 105
3.4 Force and Momentum Balances 110
3.4.1 Momentum Flux and Equivalent Forces 110
3.4.2 Transport Coefficients 110
Illustration 3.4.1 Forces on Submerged Surfaces:
Archimides Law 114
Illustration 3.4.2 Forces Acting on a Pressurized Container:
The Hoop Stress Formula 116
Illustration 3.4.3 The Effects of Surface Tension: Laplace s
Equation; Capillary Rise 117
Illustration 3.4.4 The Hypsometric Formulae 120
Illustration 3.4.5 Momentum Changes in a Flowing Fluid:
Forces on a Stationary Vane 121
Illustration 3.4.6 Particle Movement in a Fluid 123
Illustration 3.4.7 The Bernoulli Equation: Some Simple
Applications 128
Illustration 3.4.8 The Mechanical Energy Balance 132
Illustration 3.4.9 Viscous Flow in a Parallel Plate Channel:
Velocity Distribution and Flow Rate — Pressure Drop
Relation 135
Illustration 3.4.10 Non Newtonian Fluids 136
Practice Problems 139
3.5 Combined Mass and Energy Balances 142
Illustration 3.5.1 Nonisothermal CSTR with Second Order
Homogeneous Reaction A + B —» P 142
Illustration 3.5.2 Nonisothermal Tubular Reactors: The
Adiabatic Case 143
Illustration 3.5.3 Heat Effects in a Catalyst Pellet: Maximum
Pellet Temperature 145
Illustration 3.5.4 The Wet Bulb Temperature 149
Illustration 3.5.5 Humidity Charts: The Psychrometric Ratio ...151
Illustration 3.5.6 Operation of a Water Cooling Tower 157
Illustration 3.5.7 Design of a Gas Scrubber Revisited:
The Adiabatic Case 160
Illustration 3.5.8 Flash Vaporization 162
Illustration 3.5.9 Steam Distillation 165
Practice Problems 167
3.6 Combined Mass, Energy, and Momentum Balances 172
Illustration 3.6.1 Isothermal Compressible Flow in a Pipe 173
Illustration 3.6.2 Propagation of a Pressure Wave, Velocity
of Sound, Mach Number 174
Illustration 3.6.3 Adiabatic Compressible Flow in a Pipe 177
Illustration 3.6.4 Compressible Flow Charts 179
Illustration 3.6.5 Compressible Flow in Variable Area
Ducts with Friction and Heat Transfer 181
Illustration 3.6.6 The Converging Diverging Nozzle 183
Illustration 3.6.7 Forced Convection Boiling: Vaporizers
and Evaporators 184
Illustration 3.6.8 Film Condensation on a Vertical Plate 188
Illustration 3.6.9 The Nonisothermal, Nonisobaric Tubular
Gas Flow Reactor 191
Practice Problems 196
References 198
Chapter 4 Ordinary Differential Equations 203
4.1 Definitions and Classifications 203
4.1.1 Order of an ODE 203
4.1.2 Linear and Nonlinear ODEs 205
4.1.3 ODEs with Variable Coefficients 206
4.1.4 Homogeneous and Nonhomogeneous ODEs 207
4.1.5 Autonomous ODEs 208
Illustration 4.1.1 Classification of Model ODEs 208
4.2 Boundary and Initial Conditions 209
4.2.1 Some Useful Hints on Boundary Conditions 211
Illustration 4.2.1 Boundary Conditions in a Conduction
Problem: Heat Losses from a Metallic Furnace Insert 212
4.3 Analytical Solutions of ODEs 213
4.3.1 Separation of Variables 216
Illustration 4.3.1 Solution of Complex ODEs by Separation of
Variables 217
Illustration 4.3.2 Repeated Separation of Variables: The
Burning Fuel Droplet as a Moving Boundary Problem 218
4.3.2 The D Operator Method: Solution of Linear nth Order ODEs with
Constant Coefficients 221
Illustration 4.3.3 The Longitudinal Heat Exchanger Fin
Revisited 223
Illustration 4.3.4 Polymer Sheet Extrusion: The Uniformity
Index 225
4.3.3 Nonhomogeneous Linear Second Order ODEs with Constant
Coefficients 230
Illustration 4.3.5 Vibrating Spring with a Forcing Function 230
4.3.4 Series Solutions of Linear ODEs with Variable Coefficients 232
Illustration 4.3.6 Solution of a Linear ODE with Constant
Coefficients by a Power Series Expansion 233
Illustration 4.3.7 Evaluation of a Bessel Function 235
Illustration 4.3.8 Solution of a Second Order ODE with
Variable Coefficients by the Generalized Formula 238
Illustration 4.3.9 Concentration Profile and Effectiveness
Factor of a Cylindrical Catalyst Pellet 239
4.3.5 Other Methods 240
Illustration 4.3.10 Product Distribution in Reactions in
Series: Use of the Substitution y = vx 241
Illustration 4.3.11 Path of Pursuit 243
Illustration 4.3.12 Design of a Parabolic Mirror 244
4.4 Numerical Methods 245
4.4.1 Boundary Value Problems 246
4.4.2 Initial Value Problems 246
4.4.3 Sets of Simultaneous Initial Value ODEs 249
4.4.4 Potential Difficulties: Stability 249
Illustration 4.4.1 Example of a Solution by Euler s
Method 250
Illustration 4.4.2 Solution of Two Simultaneous ODEs by
the Runge Kutta Method 251
4.5 Nonlinear Analysis 252
4.5.1 Phase Plane Analysis: Critical Points 253
Illustration 4.5.1 Analysis of the Pendulum 255
4.5.2 Analysis in Parameter Space: Bifurcations, Multiplicities, and
Catastrophe 258
Illustration 4.5.2 Bifurcation Points in a System of Nonlinear
Algebraic Equations 262
Illustration 4.5.3 A System with a Hopf Bifurcation 263
4.5.3 Chaos 265
Practice Problems 268
References 270
Chapter 5 The Laplace Transformation 273
5.1 General Properties of the Laplace Transform 274
Illustration 5.1.1 Inversion of Various Transforms 278
5.2 Application to Differential Equations 280
Illustration 5.2.1 The Mass Spring System Revisited:
Resonance 282
Illustration 5.2.2 Equivalence of Mechanical Systems and
Electrical Circuits 284
Illustration 5.2.3 Response of First Order Systems 286
Illustration 5.2.4 Response of Second Order Systems 290
Illustration 5.2.5 The Horizontal Beam Revisited 296
5.3 Block Diagrams: A Simple Control System 298
5.3.1 Water Heater 301
5.3.2 Measuring Element 301
5.3.3 Controller and Control Element 302
5.4 Overall Transfer Function; Stability Criterion; Laplace Domain
Analysis 302
Illustration 5.4.1 Laplace Domain Stability Analysis 305
Practice Problems 307
References 310
Chapter 6 Special Topics 313
6.1 Biomedical Engineering, Biology, and Biotechnology 314
Illustration 6.1.1 One Compartment Pharmacokinetics 314
Illustration 6.1.2 Blood Tissue Interaction as a Pseudo
One Compartment Model 319
Illustration 6.1.3 A Distributed Model: Transport Between
Flowing Blood and Muscle Tissue 321
Illustration 6.1.4 Another Distributed Model: The Krogh
Cylinder 322
Illustration 6.1.5 Membrane Processes: Blood Dialysis 324
Illustration 6.1.6 Release or Consumption of Substances
at the Blood Vessel Wall 330
Illustration 6.1.7 A Simple Cellular Process 333
Illustration 6.1.8 Turing s Paper on Morphogenesis 338
Illustration 6.1.9 Biotechnology: Enzyme Kinetics 341
Illustration 6.1.10 Cell Growth, Monod Kinetics, Steady State
Analysis of Bioreactors 344
Practice Problems 348
6.2 A Visit to the Environment 351
Illustration 6.2.1 Mercury Volatilization from Water 353
Illustration 6.2.2 Rates of Volatilization of Solutes from
Aqueous Solutions 356
Illustration 6.2.3 Bioconcentration in Fish 357
Illustration 6.2.4 Cleansing of a Lake Bottom Sediment 359
Illustration 6.2.5 The Streeter Phelps River Pollution Model:
The Oxygen Sag Curve 361
Illustration 6.2.6 Contamination of a River Bed
(Equilibrium) 364
Illustration 6.2.7 Clearance of a Contaminated River Bed
(Equilibrium) 366
Illustration 6.2.8 Minimum Bed Requirements for Adsorptive
Water Purification (Equilibrium) 367
Illustration 6.2.9 Actual Bed Requirements for Adsorptive
Water Purification (Nonequilibrium) 368
Practice Problems 371
6.3 Welcome to the Real World 373
Illustration 6.3.1 Production of Heavy Water by Methane
Distillation 373
Illustration 6.3.2 Clumping of Coal Transported in Freight377
Cars 377
Illustration 6.3.3 Pop Goes the Vessel 378
Illustration 6.3.4 Debugging of a Vinyl Chloride Recovery
Unit 379
Illustration 6.3.5 Pop Goes the Vessel (Again) 383
Illustration 6.3.6 Potential Freezing of a Water Pipeline 385
Illustration 6.3.7 Failure of Heat Pipes 387
Illustration 6.3.8 Coating of a Pipe 389
Illustration 6.3.9 Release of Potentially Harmful Chemicals
to the Atmosphere 392
Illustration 6.3.10 Design of a Marker Particle (Revisited) 396
Practice Problems 398
References 404
Chapter 7 Partial Differential Equations: Classification, Types, and
Properties; Some Simple Transformations and Solutions 407
7.1 Properties and Classes of PDEs 409
7.1.1 Order of a PDE 409
7.1.1.1 First Order PDEs 409
7.1.1.2 Second Order PDEs 410
7.1.1.3 Higher Order PDEs 410
7.1.2 Homogeneous PDEs and BCs 410
7.1.3 PDEs with Variable Coefficients 411
7.1.4 Linear and Nonlinear PDEs: A New Category — Quasilinear
PDEs 411
7.1.5 Another New Category: Elliptic, Parabolic, and Hyperbolic
PDEs 412
7.1.6 Boundary and Initial Conditions 413
Illustration 7.1.1 Classification of PDEs 415
Illustration 7.1.2 Derivation of Boundary and Initial
Condition 416
7.2 PDEs of Major Importance 418
7.2.1 First Order Partial Differential Equations 419
7.2.1.1 Unsteady Tubular Operations (Turbulent Flow) 419
7.2.1.2 The Chromatographic Equations 419
7.2.1.3 Stochastic Processes 421
7.2.1.4 Movement of Traffic 421
7.2.1.5 Sedimentation of Particles 422
7.2.2 Second Order Partial Differential Equations 422
7.2.2.1 Laplace s Equation 422
7.2.2.2 Poisson s Equation 426
7.2.2.3 Helmholtz Equation 427
7.2.2.4 Biharmonic Equation 427
7.2.2.5 Fourier s Equation 428
7.2.2.6 Fick s Equation 428
7.2.2.7 The Wave Equation 428
7.2.2.8 The Navier Stokes Equations 429
7.2.2.9 The Prandtl Boundary Layer Equations 430
7.2.2.10 The Graetz Proolem 431
Illustration 7.2.1 Derivation of Some Simple PDEs 431
7.3 Useful Simplifications and Transformations 435
7.3.1 Elimination of Independent Variables: Reduction to ODEs 435
7.3.1.1 Separation of Variables 436
7.3.1.2 Laplace Transform 437
7.3.1.3 Similarity or Boltzmann Transformation: Combination
of Variables 437
Illustration 7.3.1 Heat Transfer in Boundary Layer Flow over
a Flat Plate: Similarity Transformation 438
7.3.2 Elimination of Dependent Variables: Reduction of Number of
Equations 443
Illustration 7.3.2 Use of the Stream Function in Boundary
Layer Theory: Velocity Profiles Along a Flat Plate 443
7.3.3 Elimination of Nonhomogeneous Terms 445
Illustration 7.3.3 Conversion of a PDE to Homogeneous
Form 445
7.3.4 Change in Independent Variables: Reduction to Canonical Form ..447
Illustration 7.3.4 Reduction of ODEs to Canonical Form 450
7.3.5 Simplification of Geometry 454
7.3.5.1 Reduction of a Radial Spherical Configuration into a
Planar One 456
7.3.5.2 Reduction of a Radial Circular or Cylindrical Configuration
into a Planar One 456
7.3.5.3 Reduction of a Radial Circular or Cylindrical Configuration
to a Semi Infinite One 457
7.3.5.4 Reduction of a Planar Configuration to a Semi Infinite
One 457
7.3.6 Nondimensionalization 457
Illustration 7.3.5 Nondimensionalization of Fourier s
Equation 457
7.4 PDEs PDQ: Locating Solutions in Related Disciplines; Solution by
Simple Superposition Methods 459
7.4.1 In Search of a Literature Solution 460
Illustration 7.4.1 Pressure Transients in a Semi Infinite Porous
Medium 460
Illustration 7.4.2 Use of Electrostatic Potentials in the Solution of
Conduction Problems 463
7.4.2 Simple Solutions by Superposition 464
7.4.2.1 Superposition by Simple Flows: Solutions in Search of a
Problem 464
Illustration 7.4.3 Superposition of Uniform Flow and a Doublet:
Flow Around an Infinite Cylinder or a Circle 468
7.4.2.2 Superposition by Multiplication: Product Solutions 470
7.4.2.3 Solution of Source Problems: Superposition by
Integration 472
Illustration 7.4.4 The Instantaneous Infinite Plane Source 474
Illustration 7.4.5 Concentration Distributions from a Finite
and Instantaneous Plane Pollutant Source in Three Dimensional
Semi Infinite Space 479
7.4.2.4 More Superposition by Integration: Duhamel s Integral and
the Superposition of Danckwerts 482
Illustration 7.4.6 A Problem with the Design of Xerox
Machines 483
Practice Problems 488
References 492
Chapter 8 Vector Calculus: Generalized Transport Equations 495
8.1 Vector Notation and Vector Calculus 496
8.1.1 Synopsis of Vector Algebra 496
Illustration 8.1.1 Two Geometry Problems 501
8.1.2 Differential Operators and Vector Calculus 503
8.1.2.1 The Gradient V 505
8.1.2.2 The Divergence V • 506
8.1.2.3 The Curl V x 507
8.1.2.4 The Laplacian V2 508
Illustration 8.1.2 Derivation of the Divergence 510
Illustration 8.1.3 Derivation of Some Relations Involving
V, V •, and V x 511
8.1.3 Integral Theorems of Vector Calculus 512
Illustration 8.1.4 Derivation of the Continuity Equation 513
Illustration 8.1.5 Derivation of Fick s Equation 514
Illustration 8.1.6 Superposition Revisited: Green s Functions
and the Solution of PDEs by Green s Functions 515
Illustration 8.1.7 The Use of Green s Functions in Solving
Fourier s Equation 520
Practice Problems 523
8.2 Transport of Mass 526
Illustration 8.2.1 Catalytic Conversion in a Coated Tubular
Reactor: Locating Equivalent Solutions in the Literature 527
Illustration 8.2.2 Diffusion and Reaction in a Semi Infinite
Medium: Another Literature Solution 532
Illustration 8.2.3 The Graetz LeVSque Problem in Mass
Transfer: Transport Coefficients in the Entry Region 533
Illustration 8.2.4 Unsteady Diffusion in a Sphere: Sorption
and Desorption Curves 538
Illustration 8.2.5 The Sphere in a Well Stirred Solution:
Leaching of a Slurry 540
Illustration 8.2.6 Steady State Diffusion in Several
Dimensions 542
Practice Problems 543
8.3 Transport of Energy 545
Illustration 8.3.1 The Graetz Leve que Problem (Yet Again!) ...546
Illustration 8.3.2 A Moving Boundary Problem: Freezing in
a Semi Infinite Solid 549
Illustration 8.3.3 Heat Transfer in a Packed Bed: Heat
Regenerators 551
Illustration 8.3.4 Unsteady Conduction 554
Illustration 8.3.5 Steady State Temperatures and Heat Flux in
Multidimensional Geometries: The Shape Factor 556
Practice Problems 556
8.4 Transport of Momentum 560
Illustration 8.4.1 Steady, Fully Developed Incompressible
Duct Flow 562
Illustration 8.4.2 Creeping Flow 564
Illustration 8.4.3 The Prandtl Boundary Layer Equations 565
Illustration 8.4.4 Inviscid Flow: Euler s Equations of
Motion 567
Illustration 8.4.5 Irrotational (Potential) Flow: Bernoulli s
Equation 568
Practice Problems 569
References 571
Chapter 9 Solution Methods for Partial Differential Equations 575
9.1 Separation of Variables 575
9.1.1 Orthogonal Functions and Fourier Series 575
9.1.1.1 Orthogonal and Orthonormal Functions 580
Illustration 9.1.1 The Cosine Set 582
9.1.1.2 The Sturm Liouville Theorem 583
9.1.1.3 Fourier Series 583
Illustration 9.1.2 Fourier Series Expansion of a Function
f(x) 585
Illustration 9.1.3 The Quenched Steel Billet Revisited 586
Illustration 9.1.4 Conduction in a Cylinder with External
Resistance: Arbitrary Initial Distribution 591
Illustration 9.1.5 Steady State Conduction in a Hollow
Cylinder 593
Practice Problems 597
9.2 Laplace Transformation and Other Integral Transforms 599
9.2.1 General Properties 599
9.2.2 The Role of the Kernel 601
9.2.3 Pros and Cons of Integral Transforms 604
9.2.3.1 Advantages 604
9.2.3.2 Disadvantages 605
9.2.4 The Laplace Transformation of PDEs 605
Illustration 9.2.1 Inversion of a Ratio of Hyperbolic
Functions 606
Illustration 9.2.2 Conduction in a Semi Infinite Medium 607
Illustration 9.2.3 Conduction in a Slab: Solution for
Small Time Constants 609
Illustration 9.2.4 Conduction in a Cylinder Revisited: Use
of Hankel Transforms 611
Illustration 9.2.5 Analysis in the Laplace Domain: The Method
of Moments 614
Practice Problems 617
9.3 The Method of Characteristics 620
9.3.1 General Properties 620
9.3.2 The Characteristics 622
Illustration 9.3.1 The Heat Exchanger with a Time Varying
Fluid Velocity 625
Illustration 9.3.2 Saturation of a Chromatographic Column 627
Illustration 9.3.3 Elution of a Chromatographic Column 630
Illustration 9.3.4 Development of a Chromatographic Pulse 632
Illustration 9.3.5 A Traffic Problem 634
Practice Problems 636
References 637
Index 639
|
any_adam_object | 1 |
author | Basmadjian, Diran |
author_facet | Basmadjian, Diran |
author_role | aut |
author_sort | Basmadjian, Diran |
author_variant | d b db |
building | Verbundindex |
bvnumber | BV013070781 |
callnumber-first | Q - Science |
callnumber-label | QA401 |
callnumber-raw | QA401 |
callnumber-search | QA401 |
callnumber-sort | QA 3401 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 950 |
ctrlnum | (OCoLC)40682437 (DE-599)BVBBV013070781 |
dewey-full | 511/.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.8 |
dewey-search | 511/.8 |
dewey-sort | 3511 18 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02448nam a2200493 c 4500</leader><controlfield tag="001">BV013070781</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20021024 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">000328s1999 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1584880120</subfield><subfield code="9">1-58488-012-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)40682437</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013070781</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA401</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.8</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Basmadjian, Diran</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The art of modeling in science and engineering</subfield><subfield code="c">Diran Basmadjian</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, Fla. [u.a.]</subfield><subfield code="b">Chapman & Hall/CRC</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">654 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">"Modeling is practiced in engineering and all physical sciences. Many specialized texts exist - written at a high level - that cover this subject. However, students and even professionals often experience difficulties in setting up and solving even the simplest of models. This can be attributed to three factors: the proper choice of model, the absence of precise solutions, and the necessity to make suitable simplifying assumptions and approximations. Overcoming these difficulties is the focus of The Art of Modeling in Science and Engineering."--BOOK JACKET.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Naturwissenschaften</subfield><subfield code="0">(DE-588)4041421-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ingenieurwissenschaften</subfield><subfield code="0">(DE-588)4137304-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ingenieurwissenschaften</subfield><subfield code="0">(DE-588)4137304-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Naturwissenschaften</subfield><subfield code="0">(DE-588)4041421-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008905291&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008905291</subfield></datafield></record></collection> |
id | DE-604.BV013070781 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:38:36Z |
institution | BVB |
isbn | 1584880120 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008905291 |
oclc_num | 40682437 |
open_access_boolean | |
owner | DE-703 DE-29 DE-19 DE-BY-UBM DE-29T DE-526 DE-634 DE-188 |
owner_facet | DE-703 DE-29 DE-19 DE-BY-UBM DE-29T DE-526 DE-634 DE-188 |
physical | 654 S. graph. Darst. |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Chapman & Hall/CRC |
record_format | marc |
spelling | Basmadjian, Diran Verfasser aut The art of modeling in science and engineering Diran Basmadjian Boca Raton, Fla. [u.a.] Chapman & Hall/CRC 1999 654 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier "Modeling is practiced in engineering and all physical sciences. Many specialized texts exist - written at a high level - that cover this subject. However, students and even professionals often experience difficulties in setting up and solving even the simplest of models. This can be attributed to three factors: the proper choice of model, the absence of precise solutions, and the necessity to make suitable simplifying assumptions and approximations. Overcoming these difficulties is the focus of The Art of Modeling in Science and Engineering."--BOOK JACKET. Ingenieurwissenschaften Mathematisches Modell Naturwissenschaft Engineering Mathematical models Mathematical models Science Mathematical models Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Naturwissenschaften (DE-588)4041421-8 gnd rswk-swf Ingenieurwissenschaften (DE-588)4137304-2 gnd rswk-swf Ingenieurwissenschaften (DE-588)4137304-2 s Mathematisches Modell (DE-588)4114528-8 s DE-604 Naturwissenschaften (DE-588)4041421-8 s HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008905291&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Basmadjian, Diran The art of modeling in science and engineering Ingenieurwissenschaften Mathematisches Modell Naturwissenschaft Engineering Mathematical models Mathematical models Science Mathematical models Mathematisches Modell (DE-588)4114528-8 gnd Naturwissenschaften (DE-588)4041421-8 gnd Ingenieurwissenschaften (DE-588)4137304-2 gnd |
subject_GND | (DE-588)4114528-8 (DE-588)4041421-8 (DE-588)4137304-2 |
title | The art of modeling in science and engineering |
title_auth | The art of modeling in science and engineering |
title_exact_search | The art of modeling in science and engineering |
title_full | The art of modeling in science and engineering Diran Basmadjian |
title_fullStr | The art of modeling in science and engineering Diran Basmadjian |
title_full_unstemmed | The art of modeling in science and engineering Diran Basmadjian |
title_short | The art of modeling in science and engineering |
title_sort | the art of modeling in science and engineering |
topic | Ingenieurwissenschaften Mathematisches Modell Naturwissenschaft Engineering Mathematical models Mathematical models Science Mathematical models Mathematisches Modell (DE-588)4114528-8 gnd Naturwissenschaften (DE-588)4041421-8 gnd Ingenieurwissenschaften (DE-588)4137304-2 gnd |
topic_facet | Ingenieurwissenschaften Mathematisches Modell Naturwissenschaft Engineering Mathematical models Mathematical models Science Mathematical models Naturwissenschaften |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008905291&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT basmadjiandiran theartofmodelinginscienceandengineering |