ICANN 99: ninth International Conference on Artificial Neural Networks ; 7 - 10 September 1999 1
Gespeichert in:
Körperschaft: | |
---|---|
Format: | Tagungsbericht Buch |
Sprache: | English |
Veröffentlicht: |
London
IEE
1999
|
Schriftenreihe: | Institution of Electrical Engineers: IEE conference publication
470,1 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIX, 514 S. Ill., graph. Darst. |
ISBN: | 0852967217 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV013052056 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 000320s1999 ad|| |||| 10||| eng d | ||
020 | |a 0852967217 |9 0-85296-721-7 | ||
035 | |a (OCoLC)633419834 | ||
035 | |a (DE-599)BVBBV013052056 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 1 | |a eng | |
049 | |a DE-91G |a DE-83 | ||
111 | 2 | |a ICANN (Veranstaltung) |n 9 |d 1999 |c Edinburgh |j Verfasser |0 (DE-588)10005805-X |4 aut | |
245 | 1 | 0 | |a ICANN 99 |b ninth International Conference on Artificial Neural Networks ; 7 - 10 September 1999 |n 1 |
264 | 1 | |a London |b IEE |c 1999 | |
300 | |a XIX, 514 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Institution of Electrical Engineers: IEE conference publication |v 470,1 | |
490 | 0 | |a IEE conference publications |v ... | |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
773 | 0 | 8 | |w (DE-604)BV013052043 |g 1 |
830 | 0 | |a Institution of Electrical Engineers: IEE conference publication |v 470,1 |w (DE-604)BV001889735 |9 470,1 | |
856 | 4 | 2 | |m Digitalisierung TU Muenchen |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008893733&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-008893733 |
Datensatz im Suchindex
_version_ | 1804127751084441600 |
---|---|
adam_text | CONTENTS
The Institution
of Electrical Engineers is not, as a body, responsible for the
opinions expressed by individual authors or speakers.
Page No.
1
Invited Paper
Products of Experts
Professor
G
E
Hinton,
University College London, UK
7
Invited Paper
Rapid Signal Transmission by Populations of Spiking Neurons
Professor
W
Gerstner,
Swiss Federal Institute of Technology (EPFL),
Switzerland
GENERATIVE MODELS
13
Scaling in a hierarchical unsupervised network
Z
Ghahramani,
A T Korenberg
and
G
E
Hinton
University
College London,
UK
19
Multi-layer perceptrons as nonlinear generative models for
unsupervised learning: a Bayesian treatment
H
Lappalainen
Helsinki University of Technology, Finland
X Giannakopoulos
IDSIA, Switzerland
25
A comparison of mixture models for density estimation
Ρ
Moerland
IDIAP, Switzerland
31
Tree-structured belief networks as models of images
С К
I Williams and X Feng
University of Edinburgh, UK
ADAPTIVE AND NEURAL ALGORITHMS
1
37
Feedback-linearisation using neural process models
J
Horn
Siemens
AG,
Germany
iv
43
Natural
gradient
matrix momentum
S Scarpetta
Salemo University, INFM, Italy and Aston University, UK
M
Rattray
University of Manchester, UK
D
Saad
Aston University, UK
49
A framework for a discrete valued Helmholtz machine
R
W
H
Dalzell and A F Murray
University of Edinburgh, UK
55
Truncated covariance matrices and Toeplitz methods in Gaussian
processes
A J Storkey
University of Edinburgh, UK
VISION
61
A model of VI visual contrast processing utilising long-range
connections and recurrent interactions
T
Hansen
and
H
Neumann
University of
Ulm,
Germany
67
Neural field description suggests feedforward mechanism of state-
dependent visual receptive field changes
К
Suder
and
F
Wörgötter
Ruhr-University, Germany
T
Wennekers
University of
Ulm,
Germany
73
On the influence of threshold variability in a model of the visual
cortex
H
Bartsch,
M
Stetter and
К
Obermayer
Technische Universität Berlin,
Germany
79
The variability of orientation maps in cat visual cortex
M
Kaschube,
F
Wolf and
T
Geisel
Max-Planck-Institut für Strömungsforschung,
Germany
SLöwel
Leibniz-Institut fur Neurobiologie,
Germany
SUPPORT
VECTOR
MACHINES
85
An
information-geometrical method for improving the
performance of support vector machine classifiers
S-i
Amari
and
S Wu
RIKEN
Brain Science Institute, Japan
91
Probabilistic
interpretations and Bayesian methods for support
vector machines
Ρ
Solüch
King s College London, UK
97
Support vector learning for ordinal regression
R
Herbrich,
T
Graepel and
К
Obermayer
Technical University of Berlin, Germany
103
Kernel-dependent Support Vector error bounds
В
Schölkopf
GMD FIRST, Germany and Australian National University, Australia
J
Shawe-Taylor
Royal Holloway College, University of London, UK and Australian
National University, Australia
A J Smola
GMD FIRST, Germany and Australian National University, Australia
R C
Williamson
Australian National University, Australia
GENERAL APPLICATIONS
109
Bearance of noise on performance and distribution of
computations using DTB
R J
Duro
and
J
Santos
Universidade
da Coruña,
Spain
115
λ-
opt neural networks for quadratic assignment problem
S
Ishii
Nara
Institute of Science and Technology and ATR Human Information
Processing Research Laboratories, Japan
H
Niitsuma
Nara
Institute of Science and Technology, Japan
121
Non-linear sub-band processing for binaural adaptive speech-
enhancement
A Hussain
University of Dundee, UK
126
Blind source separation by dynamic graphical models
H Attias
University College London, UK
vi
HIPPOCAMPUS
AND MAP FORMATION
132
A vision-driven model of hippocampal place cells and temporally
asymmetric LTP-induction for action learning
A Arleo and
W
Gerstner
EPFL, Swiss Federal Institute of Technology, Switzerland
138
Spatial representations in related environments in a recurrent
model of area
С
A3
of the rat
S
Káli
University College London, UK and MIT, USA
PDayan
University College London, UK
144
Concentric spatial maps for neural network based navigation
G
Chao
and
M G
Dyer
University of California, Los Angeles, USA
ISO Postontogenetic short-term plasticity in the somatosensory system:
a neural network model
U
Dicke
Trinity College Dublin, Ireland
С
W
Eurich and
H
Schwegler
Universität
Bremen, Germany
GENERATIVE MODELS
156
Self-organisation in the
SOM
with a decreasing neighbourhood
function of any width
J
A Flanagan
Helsinki University of Technology, Finland
162
Self-organisation and association for temporal coding
К
Amemori
and
S
Ishii
Nara
Institute of Science and Technology, Japan
168
The self-organising map of attribute trees
M Peura
Helsinki University of Technology, Finland
174
Application of Tree Structured Self-Organising Maps in content-
based image retrieval
J
Laaksonen,
M
Koskela and
E Oja
Helsinki University of Technology, Finland
VII
180
Exploring competition and co-operation for solving the Euclidean
Travelling Salesman Problem by using self-organising map
E
M
Cochrane and
J
С
Cochrane
Imperial College, UK
186
Self-organisation of predictive representations
J M
Herrmann
Max-Planck-Institut
für Strömungsforschung,
Germany
К
Pawelzik
Universität
Bremen, Germany
T
Geisel
Max-Planck-Institut
für Strömungsforschung,
Germany
192
Rectified Gaussian distributions and the identification of multiple
cause structure in data
D
Charles and
C Fyfe
Paisley University, UK
ALGORITHMS
1
198
An adaptive network for encoding data using piecewise linear
functions
S P
Luttrell
DERA, UK
204
Fast change point detection in switching dynamics using a hidden
Markov model of prediction experts
J
Kohlmorgen,
S
Lemm and K-R
Müller
GMD FIRST, Germany
S
Liehr and
К
Pawelzik
Institute for Theoretical Physics, Germany
210
Efficient training of RBF networks for classification
IT Nabney
Aston University, UK
216
Discriminative coding with predictive neural networks
С
Chavy,
В
Gas and
J L
Zarader
Université Paris
VI,
France
221
Multistage
building
learning based on misclassification measure
J Rokui and H
Shimodaira
Japan Advanced Institute of Science and Technology, Japan
227
Improving the performance of multi-layer Perceptrons where
limited training data are available for some classes
C R
Parikh,
M J Pont and N B
Jones
University of Leicester, UK
VIII
233
Local
learning by sparse radial basis functions
Y
Grandvalet
and
C Ambroise
Université de Technologie de Compiègne, France
SCanu
INSA,
France
239
Experimental
study on the precision requirements of RBF,
RPROP and BPTT training
U
Vollmer
and A Strey
University of
Ulm,
Germany
245
Analysis of spatio-temporal patterns in associative networks of
spiking neurons
T Wennekers
Max-Planck-Institute for Mathematics in the Sciences, Germany
VISION
251
Modelling the self-organisation of directional selectivity in the
primary visual cortex
I Farkaš
Slovak Academy of Sciences, Slovak Republic
R
Miikkulainen
University of Texas, USA
257
Emergence of complex cell properties by decomposition of natural
images into independent feature subspaces
A Hyvärinen
and
P
Hoyer
Helsinki University of Technology, Finland
263
Are human scanpaths Levy flights?
D
Brockmann
and
T
Geisel
Max-Planck-Institut für Strömungsforschung,
Germany
269 Computing
stereoscopic disparity with binocular cortical simple
and complex cells
F Wörgötter
and
A Cozzi
Ruhr-Universität Bochum,
Germany
274
A physicalist approach to first-order analysis of optic flow fields in
extrastriate
cortical areas
S P
Sabatini,
F
Solari,
R Carmeli, P
Cavalieri
and G M Bisio
University of Genoa, Italy
280
Neural dynamics in a recurrent network model of primary visual
cortex
Z
Li
University College London, UK
ix
286
Orientation
selective
cells emerge in a sparsely coding Bolztmann
machine
С
Weber and
К
Obermayer
Technische Universität Berlin,
Germany
SUPPORT
VECTOR
MACHINES
292
Mixtures of Gaussian process priors
JCLemm
Universität Münster,
Germany
298
Confidence bounds for the generalisation performances of linear
combination of functions
G
Gavin and A Elisseeff
Université Lumière,
France
304
Classification on proximity data with LP-machines
Τ
Graepel and
R
Herbrich
Technische Universität Berlin,
Germany
В
Schölkopf
and A Smola
Australian National University, Australia and GMD FIRST, Germany
P Bartlett
Australian National University, Australia
K-R
Müller
GMD FIRST, Germany
К
Obermayer
Technische Universität Berlin,
Germany
R
Williamson
Australian National University, Australia
310
Estimating the sample complexity of a multi-class discriminant
model
Y
Guermeur
Université
Paris
6,
France
A Elisseeff and
H
Paugam-Moisy
Université Lumière
Lyon 2,
France
316
The wall histogram method
S
Sablatnög,
G K
Kraetzschmar, S
Enderle
and G
Palm
University of
Ulm,
Germany
323
Neural networks with periodic and
monotonie
activation
functions: a comparative study in classification problems
J M
Sopeña
Universität de Barcelona,
Spain
E
Romero
and R
Alquézar
Universität
Politècnica
Catalunya,
Spain
APPLICATIONS
1
329
Using reinforcement learning for engine control
R
Schoknecht and
M
Riedmiller
Universität
Karlsruhe, Germany
335
Paper curl prediction- neural networks applied to the
papermaking industry
P J
Edwards,
A F
Murray,
G Papadopoulos, M F
Gordon and
A R Wallace
University of Edinburgh, UK
J
Barnard
Tullis Russell, UK
341
Towards predicting neural net control of macro-econometric
multi-compartment models
J
A Donath,
T
Frontzek and
R
Eckmiller
University of Bonn, Germany
347
Selection of features for the classification of wood board defects
P
A Estévez
and
M
Fernández
University of Chile, Chile
R J
Alcock and
M S Packianather
Cardiff University, UK
353
Hard contact surface tracking for industrial manipulators with
orientation control and (SR) position based force control
R
Maaß,
V
Zahn,
M
Dapper,
M
Fuchs and
R
Eckmiller
University of Bonn, Germany
359
Learning to predict a context-free language: Analysis of dynamics
in recurrent hidden units
M Bodén, J
Wiles,
В
Tonkes and A Blah-
University of Queensland, Australia
365
Combining multiple neural nets for visual feature selection and
classification
G
Heidemann
and
H
Ritter
University of Bielefeld, Germany
371
Keyword selection method for characterising text document maps
К
Lagus and
S
Kaski
Helsinki University of Technology, Finland
xi
CEREBELLUM AND HIPPOCAMPUS
377
Modelling retinal mosaic development with dendritic outgrowth
and lateral cell movement
S J
Eglen
University of Edinburgh, UK
A van Ooyen
Netherlands Institute for Brain Research, The Netherlands
383
Developmental evolution of dendritic morphology in a multi-
compartmental neuron model
A G
Rust and
R
Adams
University of Hertfordshire, UK
389
The septo-hippocampal system and anxiety: a robot simulation
J
F
Kazer and
A J
С
Sharkey
University of Sheffield, UK
395
Capturing movement responses of single cells in the human basal
ganglia using hidden Markov models
N
M Branston
University College London, UK
WEl-Deredy
University College London and Liverpool John
Moores
University, UK
401
Modelling the frontal lobes in health and disease
N R
Taylor and
J G
Taylor
King s College London, UK
407
A cortical architecture for parallel anticipation of sensorimotor
sequences
A Heinze, V
Stephan,
D
Surmeli and
Н
-M
Gross
Technical University
Ilmenau,
Germany
413
The role of activity in corpus callosum development in the visual
cortex
T
Hely
Santa
Fe
Institute, USA
HEORY
419
Optimal
hyperplane
classifier based on entropy number bound
К
Tsuda
Electrotechnical Laboratory, Japan
425
Validity of TAP equations in neural networks
MAR Leisink and
H J
Kappen
University of
Nijmegen,
The Netherlands
431
New information theoretical approach to the storage capacity of
neural networks with binary weights
H
Suyari and I Matsuba
Chiba
University, Japan
437
Approximate learning curves for Gaussian processes
P
Sollich
King s College London, UK
VISUAL APPLICATIONS
443
On appropriate modelling strategies for estimating land cover
areas from satellite imagery
H G
Lewis,
M S
Nixon and
M
Brown
University of Southampton, UK
449
Applications of cellular neural networks (CNN) to grey scale image
filtering
MAJ
Moran
and
JAF
Muñoz
Universidad de Extremadura,
Spain
455
Automatic
contour extraction in images using a 2-D hidden
Markov model
О
Gérard
Laboratoires d Electronique Philips and Université Pierre et Marie
Curie, France
F d Alché-Buc
Université Pierre et Marie Curie, France
S Markram-Ebeid
Laboratoires d Electronique Philips, France
P
Gallinari
Université Pierre et Marie Curie, France
T
Artières
Université de Cergy-Pontoise, France
461
A
multi-resolution filling-in model for brightness
perception
W
Sepp
and H
Neumann
Universität Ulm,
Germany
TEMPORAL NETWORKS AND HARDWARE
467
Using
temporal
information in input features of neural networks
E
Fuchs
and
В
Sick
University of
Passau,
Germany
XIII
473
Time delay estimation with hidden Markov models
M
Azzouzi and IT Nabney
Aston University, UK
479
Spatially continuous learning systems: artificial neural networks in
a bulk material continuum
J E
Steck
and
S R
Skinner
Wichita State University, USA
A Cruz-Cabrera
Digital Optics Corporation, USA
M
Yang and
E C Behrman
Wichita State University, USA
485
Clustering with spiking neurons
I Opher and
D
Horn
Tel Aviv University, Israel
B Quenet
ESPCI, France
PCA AND
ICA
491
Regression using independent component analysis, and its
connection to multi-layer perceptrons
A Hyvärinen
Helsinki University of Technology, Finland
497
Local PCA learning with resolution-dependent mixtures of
Gaussiane
P
Meinicke and
H
Ritter
University of Bielefeld, Germany
503
Non-stationary independent component analysis
R
Everson and
S J
Roberts
Imperial College London, UK
509
Variational principal components
C M
Bishop
Microsoft Research, UK
ADAPTIVE AND NEURAL ALGORITHMS
2
515
Rule extraction from binary neural networks
M
Muselli and
D
Liberati
Istituto
per
і
Circuiti Elettronici,
Italy
521
Régularisation
of
mixture
density
networks
L U Hjorth
and I
T Nabney
Aston University, UK
527
SDTs: Sparse dynamic trees
N J
Adams and
С К
I Williams
University of Edinburgh, UK
533
Régularisation
of RBF-networks with the Bayesian evidence
scheme
D
Husmeier and
S J
Roberts
Imperial College of Science, Technology and Medicine, UK
BIOLOGICAL TEMPORAL NETWORKS
539
Time-slicing: a model for cerebellar function based on
synchronisation, reverberation and time windows
W
M
Kistler
and
J L
van Hemmen
Technische Universität München,
Germany
545
Avalanches of activity in a network of integrate-and-fire neurons
with stochastic input
С
W Eurich
Universität
Bremen, Germany
U
Ernst
Max-Planck-Institut für Strömungsforschung,
Germany
551
Is a biological temporal learning rule compatible with learning
Synfire chains?
D C
Sterrati
University of Edinburgh, UK
557
An optimal connection radius for long-range synchronisation
R
Маех
and
E De Schutter
University of Antwerp, Belgium
THEORY
563
VC dimension bounds for higher-order neurons
M
Schmitt
Ruhr-Universität Bochum,
Germany
569
Local gain adaptation in stochastic gradient descent
N N
Schraudolph
IDSIA, Switzerland
xv
575 Linear
programs for automatic accuracy control in regression
A Smola,
В
Schölkopf
and
G
Ratsch
GMD FIRST,
Germany and Australian
National
University, Australia
581
Maximising information about a noisy signal with a single non¬
linear neuron
J
Orwell
Kingston University, UK
M D Plumbley
King s College London, UK
587
Simultaneous ¿/»-approximations of polynomials and derivatives
on the whole space
Y
Ito
Aichi-Gakuin University, Japan
593
Quadratic programming for learning sparse codes
D
Endres and
P
Földiák
University of St Andrews, UK
597
Local minima and plateaus in multilayer neural networks
K Fukumizu
and S-i
Amari
Brain Science Institute,
RIKEN,
Japan
APPLICATIONS
2
603
An adaptive support vector regression filter: a signal detection
application
R
Rosipal and
M Girolami
University of Paisley, UK
608
Piecewise
affine
neural networks and nonlinear control: stability
results
C
-А
Lehalle and
R
Azencott
Ecole Normale Supérieure de
Cachan,
France
613
Rule-extraction from radial basis function networks
K J
McGarry,
J
Tait, S
Wermter and J Maclntyre
University of
Sunderland,
UK
619
Chemical structure matching using correlation matrix memories
J
Austin, A Turner,
M
Turner and
К
Lees
University of York, UK
625
The study of micro-arousals using neural network analysis of the
EEG
M
Zamora
and
L Tarassenko
University of Oxford, UK
xvi
631
Analysis of
1С
fabrication processes using self-organising maps
S
Rüping
University of
Paderborn,
Germany
J
Müller
Robert Bosch GmbH, Germany
637
Application of a reduced Hopfield neural net on dynamic routing
in real time communication network
L
Zhang and
Z
Liu
Beijing University of Posts and Telecommunications, People s Republic
of China
643
Optimisation of surface component mounting on the printed
circuit board using SOM-TSP method
K Fujimura,
К
Obu-Cann and
H Tokutaka
Tottori
University,
Japan
TEMPORAL
NETWORKS AND HARDWARE
HARDWARE
PAPERS:
649
A neural network model for an electronic nose based on quartz-
crystal
microbalance
sensors
M
Nakamura and I Sugimoto
NTT Lifestyle and Environmental Technology Laboratories, Japan
655
A nonlinear oscillator network circuit for image segmentation with
double-threshold phase detection
H
Ando,
M
Miyake,
T
Morie,
M Nagata and A Iwata
Hiroshima
University, Japan
661
Towards an FPGA based
reconfigurable
computing environment
for neural network implementations
J Zhu, G J
Milne and
В К
Günther
University of South Australia, Australia
TEMPORAL NETWORKS PAPERS:
667
Structure evolution for time-delay neural networks
В
Sick
University of Passau, Germany
673
Efficient encodings of finite automata in discrete-time recurrent
neural networks
R C
Carrasco,
J
Oncina and M
Forcada
Universität
ďAlacant,
Spain
XVII
678
Recursive Bayesian modelling of time series by neural networks
Τ
Dodd and
С
Harris
University of Southampton, UK
684
Computationally efficient locally-recurrent neural networks for
on-line signal processing
A Hussain
University of Dundee, UK
J J
Soraghan and I Shim
University of Strathclyde, UK
690
A neural network for scene segmentation based on compact
astable
oscillators
J
Cosp and
J
Madrenas
Universität
Politécnica de
Catalunya,
Spain
PCA
AND ICA
696
Independent component analysis by the PFANN neural network
S
Fiori
and
P Burrascano
University of Perugia, Italy
702
On information maximisation and blind signal deconvolution
ARöbel
Technical University of Berlin, Germany
708
Using noise to form a minimal overcomplete basis
С
Fyfe and
D
Charles
University of Paisley, UK
714
A new adaptive architecture: analogue synthesiser of orthogonal
functions
V Chesnokov
De Montfort
University, UK
ALGORITHMS
2
720
Neural associative processing of document images
SEM
O Keefe and
J
Austin
University of York, UK
726
Self-organisingly emerging activeness architecture realised by
coherent neural networks
AHirose
University of Tokyo, Japan
XVIII
732
Stimulus
segmentation
in a stochastic neural network with
exogenous signals
S
Stroeve,
В
Kappen and
S Gielen
University of
Nijmegen,
The Netherlands
738
Feature extraction algorithms for pattern classification
S
Goodman and A Hunter
University of
Sunderland,
UK
743
Learning error-correcting output codes from data
E
Alpaydin
Bogaziçi
University, Turkey
E Mayoraz
IDIAP, Switzerland
749
Selecting features in neurofuzzy modelling by multiobjective
genetic algorithms
С
Emmanouilidis, A Hunter,
J Maclntyre
and
С Сох
University of
Sunderland,
UK
755
One sensor learning from another
S
Enderle,
G
Kraetzschmar,
S
Sablatnög and
G
Palm
University of
Ulm,
Germany
761
Recurrent learning of input-output stable behaviour in function
space: a case study with the Roessler attractor
J J
Steil
and
H
Ritter
University of Bielefeld, Germany
COGNITIVE MODELLING
767
Analysing psychotherapy process time series using neural maps
T
Villmann
and A Hessel
Universität
Leipzig, Germany
773
High capacity neural networks for familiarity discrimination
R
Bogacz,
M
W
Brown
and C
Giraud-Carrier
University of Bristol, UK
779
IACAPA: Modelling recognition and learning of people with an
interactive activation and competition model
S
V
Stevenage
and
H G
Lewis
University of Southampton, UK
785
Synergy of spectral and ear model features for neural speech
recognition
R
Gemello,
D
Albesano and
F
Mana
CSELT,
Italy
XIX
791
ESyNN
-
a model to abstractly emulate synchronisation in neural
networks
H
Dürer
and
Τ
Waschulzik
Universität
Bremen, Germany
797
A spatio-temporal neural network applied to visual speech
recognition
A R
Baig,
R
Séguier
and
G
Vaucher
Supélec, France
803
Response of an excitatory-inhibitory neural network to external
stimulation: an application to image segmentation
SSinha
Indian Institute of Science, India
J Basak
Indian Statistical Institute, India
809
Invited Paper
Beyond Independent Components
Dr A Hyvärinen,
Helsinki University of Technology, Finland
MODEL COMBINATION AND CLUSTERING
815
Deriving cluster analytic distance functions from Gaussian
mixture models
M E
Tipping
Microsoft Research, UK
821
Mixture conditional density estimation with the EM algorithm
N
Vlassis and
B Kröse
University of Amsterdam, The Netherlands
826
Covariance-based weighting for optimal combination of model
predictions
W
D
Penny,
D
Husmeier and
S J
Roberts
Imperial College, UK
832
A neural-Bayesian approach to survival analysis
В
Bakker
and
T
Heskes
University of
Nijmegen,
The Netherlands
838
Classification using localised mixtures of experts
P
Moerland
IDIAP, Switzerland
XX
844
Minimum
entropy data partitioning
S J
Roberts,
R
Everson and
I Rezek
Imperial College of Science, Technology and Medicine, UK
CLASSIFICATION ALGORITHMS
850
Learning to forget: Continual prediction with LSTM
F A Gers,
J
Schmidhuber and
F
Cummins
IDSIA, Switzerland
856
How irrelevant inputs affect
MLP
pattern based learning
С
Goerick
Ruhr-Universität Bochum,
Germany
862
Neural network training using multi-channel data with aggregate
labelling
N
McGrogan
University of Oxford, UK
C M
Bishop
Microsoft Research, UK
L Tarassenko
University of Oxford, UK
868
Backtracking deterministic annealing for constraint satisfaction
problems
H
Wersing and
H
Ritter
University of Bielefeld, Germany
874
Hypothesis verification based on classification at unequal error
rates
U
Kreßel,
F
Lindner,
С
Wöhler and
A Linz
DaimlerChrysler,
Germany
880
Adaptive margin Support Vector Machines for classification
learning
R
Herbrich
Royal
HoĽoway,
University of London, UK and Technical University of
Berlin, Germany
J
Weston
Royal Holloway, University of London, UK
COGNITIVE MODELLING
886
Extended encoding/decoding of embedded structures using
connectionist networks
L Niklasson
University of
Skövde,
Sweden
xxi
892
Stochastic models for surface information extraction in texts
M-R
Amini,
H
Zaragoza
and
Ρ
Gallinari
LIP6 University of Paris
6,
France
898
Recurrent neural network learning for text routing
S
Wermter,
G
Arevian and
С
Panchev
University of
Sunderland,
UK
904
Vicarious learning in mobile neurally controlled agents: the V-
MAXSON architecture
F L
Crabbe and
M G
Dyer
University of California Los Angeles, USA
910 MLP
emulation of
N-gram
models as a first step to connectionist
language modelling
M J
Castro
Universität
Politècnica de
Valencia, Spain
F Prat
Universität Jaume
I, Spain
F Casacuberta
Universität
Politècnica de
Valencia, Spain
916
A
constructivist neural network model of German verb inflection
in agrammatic aphasia
G
Westermann
and
D
Willshaw
University of Edinburgh, UK
M
Репке
Heinrich-Heine Universität Düsseldorf,
Germany
VECTOR QUANTISATION
922
Non-linear dimensionality reduction with input distances
preservation
L
Garrido
Universität de Barcelona,
Spain
S
Gómez
Universität
Rovira i Virgili,
Spain
J
Roca
Universität de Barcelona,
Spain
928 An
analysis of
initial
state dependence in generalised LVQ
A Sato
NEC Corporation,
Japan
934
Generative vector quantisation
M
Westerdijk,
D
Barber and
W Wiegerinck
University of
Nijmegen,
The Netherlands
XXII
940
Fast winner search for SOM-based monitoring and retrieval of
high-dimensional data
S
Kaski
Helsinki University of Technology, Finland
946
A self-organising map for clustering probabilistic models
J Hollmén
Helsinki University of Technology, Finland
V Tresp
Siemens
AG,
Germany
О
Simula
Helsinki University of Technology, Finland
952
Active topographic mapping of proximities
M
Hasenjäger
and
H
Ritter
Universität Bielefeld,
Germany
К
Obermayer
Technical
University of
Berlin,
Germany
COMMERCIAL AND MEDICAL APPLICATIONS
COMMERCIAL PAPERS
958
Neural network approach to improving fault location in local
telephone networks
P
Zhou and
J
Austin
University of York, UK
964
A new neuro-fuzzy system for efficient ATM traffic control
J J
Custodio
and
M
Tascón
University of Valladolid, Spain
M
Merino
Universidad Pontificia de
Salamanca, Spain
Y A Dimitriadis
University of Valladolid, Spain
970
Neural-based queueing system modelling for service quality
estimation in B-ISDN networks
A Aussem
Université
Blaise Pascal, France
S
Rouxel and
R
Marie
IRISA,
France
976
Effectiveness of feature extraction in neural network architectures
for novelty detection
J F D
Addison,
S
Wermter and
J Maclntyre
University of
Sunderland,
UK
XXIII
MEDICAL
PAPERS
982
KBANNs and the classification of 31P MRS of malignant
mammary tissues
M
Sordo,
H
Buxton and
D
Watson
University of Sussex, UK
988
Recognition of gene regulatory sequences by bagging of neural
networks
G
Thijs and
Y Moreau
Katholieke Universiteit Leuven,
Belgium
S Rombauts
Flemish Institute for Biotechnology and University of Gent, Belgium
В
de Moor
Katholieke Universiteit Leuven,
Belgium
Ρ
Rouzé
INRA,
France and University of Gent, Belgium
COMPUTATIONAL
NEUROSCIENCE
994
Can fly tangential neurons be used to estimate self-motion?
Μ Ο
Franz and
T R
Neumann
MPI
für biologische Kybernetik,
Germany
M
Plagge
WSI, Germany
H A
Mallot
MPI
für biologische Kybernetik,
Germany
A Zeli
WSI, Germany
1000
Influence
of dendritic morphology on axonal competition
A van Ooyen
Netherlands Institute for Brain Research, The Netherlands
D J
Willshaw
University of Edinburgh, UK
1006
The effects of intrinsic noise on pattern recognition in a model
pyramidal cell
B P
Graham
University of Edinburgh, UK
1012
Understanding the PSTH response to synaptic input
A Herrmann and
W
Gerstner
Swiss Federal Institute of Technology (EPFL), Switzerland
xxiv
1017
Statistical models and sensory attention
Ρ
Dayan
University College London, UK
R S
Zemel
University of Arizona, USA
1023
Components of brain activity
-
data analysis for fMRI
S
Dodel,
J M
Herrmann and
T
Geisel
Max Planck Institute for Fluid Dynamics, Germany
xxv
|
any_adam_object | 1 |
author_corporate | ICANN (Veranstaltung) Edinburgh |
author_corporate_role | aut |
author_facet | ICANN (Veranstaltung) Edinburgh |
author_sort | ICANN (Veranstaltung) Edinburgh |
building | Verbundindex |
bvnumber | BV013052056 |
ctrlnum | (OCoLC)633419834 (DE-599)BVBBV013052056 |
format | Conference Proceeding Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01409nam a2200325 cc4500</leader><controlfield tag="001">BV013052056</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">000320s1999 ad|| |||| 10||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0852967217</subfield><subfield code="9">0-85296-721-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)633419834</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013052056</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="111" ind1="2" ind2=" "><subfield code="a">ICANN (Veranstaltung)</subfield><subfield code="n">9</subfield><subfield code="d">1999</subfield><subfield code="c">Edinburgh</subfield><subfield code="j">Verfasser</subfield><subfield code="0">(DE-588)10005805-X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">ICANN 99</subfield><subfield code="b">ninth International Conference on Artificial Neural Networks ; 7 - 10 September 1999</subfield><subfield code="n">1</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">IEE</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 514 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Institution of Electrical Engineers: IEE conference publication</subfield><subfield code="v">470,1</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">IEE conference publications</subfield><subfield code="v">...</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV013052043</subfield><subfield code="g">1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Institution of Electrical Engineers: IEE conference publication</subfield><subfield code="v">470,1</subfield><subfield code="w">(DE-604)BV001889735</subfield><subfield code="9">470,1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung TU Muenchen</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008893733&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008893733</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV013052056 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:38:19Z |
institution | BVB |
institution_GND | (DE-588)10005805-X |
isbn | 0852967217 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008893733 |
oclc_num | 633419834 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-83 |
owner_facet | DE-91G DE-BY-TUM DE-83 |
physical | XIX, 514 S. Ill., graph. Darst. |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | IEE |
record_format | marc |
series | Institution of Electrical Engineers: IEE conference publication |
series2 | Institution of Electrical Engineers: IEE conference publication IEE conference publications |
spelling | ICANN (Veranstaltung) 9 1999 Edinburgh Verfasser (DE-588)10005805-X aut ICANN 99 ninth International Conference on Artificial Neural Networks ; 7 - 10 September 1999 1 London IEE 1999 XIX, 514 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Institution of Electrical Engineers: IEE conference publication 470,1 IEE conference publications ... (DE-588)1071861417 Konferenzschrift gnd-content (DE-604)BV013052043 1 Institution of Electrical Engineers: IEE conference publication 470,1 (DE-604)BV001889735 470,1 Digitalisierung TU Muenchen application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008893733&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | ICANN 99 ninth International Conference on Artificial Neural Networks ; 7 - 10 September 1999 Institution of Electrical Engineers: IEE conference publication |
subject_GND | (DE-588)1071861417 |
title | ICANN 99 ninth International Conference on Artificial Neural Networks ; 7 - 10 September 1999 |
title_auth | ICANN 99 ninth International Conference on Artificial Neural Networks ; 7 - 10 September 1999 |
title_exact_search | ICANN 99 ninth International Conference on Artificial Neural Networks ; 7 - 10 September 1999 |
title_full | ICANN 99 ninth International Conference on Artificial Neural Networks ; 7 - 10 September 1999 1 |
title_fullStr | ICANN 99 ninth International Conference on Artificial Neural Networks ; 7 - 10 September 1999 1 |
title_full_unstemmed | ICANN 99 ninth International Conference on Artificial Neural Networks ; 7 - 10 September 1999 1 |
title_short | ICANN 99 |
title_sort | icann 99 ninth international conference on artificial neural networks 7 10 september 1999 |
title_sub | ninth International Conference on Artificial Neural Networks ; 7 - 10 September 1999 |
topic_facet | Konferenzschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008893733&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV013052043 (DE-604)BV001889735 |
work_keys_str_mv | AT icannveranstaltungedinburgh icann99ninthinternationalconferenceonartificialneuralnetworks710september19991 |