Einstein's field equations and their physical implications: selected essays in honour of Jürgen Ehlers
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | German |
Veröffentlicht: |
Berlin [u.a.]
Springer
2000
|
Schriftenreihe: | Lecture notes in physics
540 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIII, 433 S. |
ISBN: | 3540670734 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV012932456 | ||
003 | DE-604 | ||
005 | 20090507 | ||
007 | t | ||
008 | 991221s2000 gw |||| 01||| ger d | ||
016 | 7 | |a 958131511 |2 DE-101 | |
020 | |a 3540670734 |c Pp. : DM 149.00 |9 3-540-67073-4 | ||
035 | |a (OCoLC)43311748 | ||
035 | |a (DE-599)BVBBV012932456 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-355 |a DE-703 |a DE-91G |a DE-706 |a DE-634 |a DE-83 | ||
050 | 0 | |a QC173.6 | |
082 | 0 | |a 530.11 |2 21 | |
084 | |a UD 8220 |0 (DE-625)145543: |2 rvk | ||
084 | |a PHY 042f |2 stub | ||
245 | 1 | 0 | |a Einstein's field equations and their physical implications |b selected essays in honour of Jürgen Ehlers |c Bernd G. Schmidt (ed.) |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2000 | |
300 | |a XIII, 433 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in physics |v 540 | |
650 | 4 | |a Einstein field equations | |
650 | 0 | 7 | |a Einstein-Feldgleichungen |0 (DE-588)4013941-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Feldgleichung |0 (DE-588)4131471-2 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
655 | 7 | |0 (DE-588)4016928-5 |a Festschrift |2 gnd-content | |
689 | 0 | 0 | |a Feldgleichung |0 (DE-588)4131471-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Einstein-Feldgleichungen |0 (DE-588)4013941-4 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Schmidt, Bernd G. |d 1941- |e Sonstige |0 (DE-588)121649067 |4 oth | |
700 | 1 | |a Ehlers, Jürgen |d 1929-2008 |0 (DE-588)121317374 |4 hnr | |
830 | 0 | |a Lecture notes in physics |v 540 |w (DE-604)BV000003166 |9 540 | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008805933&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-008805933 |
Datensatz im Suchindex
_version_ | 1804127623988641792 |
---|---|
adam_text | CONTENTS SELECTED SOLUTIONS OF EINSTEIN*S FIELD EQUATIONS: THEIR ROLE IN
GENERAL RELATIVITY AND ASTROPHYSICS JI* R´ * BI* C´ AK
...................................................... 1 1 INTRODUCTION
AND A FEW EXCURSIONS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 1 1.1 A WORD ON THE ROLE OF EXPLICIT SOLUTIONS IN OTHER PARTS OF
PHYSICS AND ASTROPHYSICS . . . . . . . . . . . . . . . . 3 1.2
EINSTEIN*S FIELD EQUATIONS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 5 1.3 *JUST SO* NOTES ON THE SIMPLEST SOLUTIONS: THE
MINKOWSKI, DE SITTER, AND ANTI-DE SITTER SPACETIMES . . . . . . . . . .
. . . . . . . . . 8 1.4 ON THE INTERPRETATION AND CHARACTERIZATION OF
METRICS . . . . . . . 11 1.5 THE CHOICE OF SOLUTIONS . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 15 1.6 THE OUTLINE . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 17 2 THE SCHWARZSCHILD SOLUTION . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 19 2.1 SPHERICALLY SYMMETRIC
SPACETIMES . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 THE
SCHWARZSCHILD METRIC AND ITS ROLE IN THE SOLAR SYSTEM . . 20 2.3
SCHWARZSCHILD METRIC OUTSIDE A COLLAPSING STAR . . . . . . . . . . . . .
21 2.4 THE SCHWARZSCHILD*KRUSKAL SPACETIME . . . . . . . . . . . . . . .
. . . . . . 25 2.5 THE SCHWARZSCHILD METRIC AS A CASE AGAINST
LORENTZ-COVARIANT APPROACHES . . . . . . . . . . . . . . . . . . . . 28
2.6 THE SCHWARZSCHILD METRIC AND ASTROPHYSICS . . . . . . . . . . . . .
. . . 29 3 THE REISSNER*NORDSTR¨ OM SOLUTION . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 31 3.1 REISSNER*NORDSTR¨ OM BLACK HOLES
AND THE QUESTION OF COSMIC CENSORSHIP . . . . . . . . . . . . . . . . .
. . . 32 3.2 ON EXTREME BLACK HOLES, D -DIMENSIONAL BLACK HOLES, STRING
THEORY AND *ALL THAT* . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 39 4 THE KERR METRIC . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 42 4.1 BASIC FEATURES . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 42 4.2 THE PHYSICS AND ASTROPHYSICS AROUND ROTATING BLACK HOLES . 47
4.3 ASTROPHYSICAL EVIDENCE FOR A KERR METRIC . . . . . . . . . . . . . .
. . . . 50 5 BLACK HOLE UNIQUENESS AND MULTI-BLACK HOLE SOLUTIONS . . .
. . . . . . . . 52 6 ON STATIONARY AXISYMMETRIC FIELDS AND RELATIVISTIC
DISKS . . . . . . . . 55 6.1 STATIC WEYL METRICS . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 55 6.2 RELATIVISTIC
DISKS AS SOURCES OF THE KERR METRIC AND OTHER STATIONARY SPACETIMES . .
. . . . . . . . . . . . . . . . . . . . . . . 57 X CONTENTS 6.3
UNIFORMLY ROTATING DISKS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 59 7 TAUB-NUT SPACE . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 62 7.1 A NEW WAY TO
THE NUT METRIC . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.2 TAUB-NUT PATHOLOGIES AND APPLICATIONS. . . . . . . . . . . . . . . .
. . . 64 8 PLANE WAVES AND THEIR COLLISIONS . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 66 8.1 PLANE-FRONTED WAVES . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 8.2
PLANE-FRONTED WAVES: NEW DEVELOPMENTS AND APPLICATIONS . . 71 8.3
COLLIDING PLANE WAVES . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 72 9 CYLINDRICAL WAVES . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 9.1
CYLINDRICAL WAVES AND THE ASYMPTOTIC STRUCTURE OF 3-DIMENSIONAL GENERAL
RELATIVITY . . . . . . . . . . . . . . . . . . . . . . . 78 9.2
CYLINDRICAL WAVES AND QUANTUM GRAVITY . . . . . . . . . . . . . . . . .
. 82 9.3 CYLINDRICAL WAVES: A MISCELLANY . . . . . . . . . . . . . . . .
. . . . . . . . . . 85 10 ON THE ROBINSON*TRAUTMAN SOLUTIONS . . . . . .
. . . . . . . . . . . . . . . . . . . . 86 11 THE BOOST-ROTATION
SYMMETRIC RADIATIVE SPACETIMES . . . . . . . . . . . . 88 12 THE
COSMOLOGICAL MODELS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 93 12.1 SPATIALLY HOMOGENEOUS COSMOLOGIES . . . . .
. . . . . . . . . . . . . . . . . . 95 12.2 INHOMOGENEOUS COSMOLOGIES. .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 13
CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 105 REFERENCES . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 108 THE CAUCHY PROBLEM FOR THE EINSTEIN EQUATIONS HELMUT FRIEDRICH,
ALAN RENDALL ................................... 127 1 INTRODUCTION . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 127 2 BASIC OBSERVATIONS AND CONCEPTS . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 131 2.1 THE PRINCIPAL
SYMBOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 132 2.2 THE CONSTRAINTS . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 135 2.3 THE BIANCHI IDENTITIES . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 2.4
THE EVOLUTION EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 137 2.5 ASSUMPTIONS AND CONSEQUENCES . . . . . . . . . .
. . . . . . . . . . . . . . . . . 146 3 PDE TECHNIQUES . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
147 3.1 SYMMETRIC HYPERBOLIC SYSTEMS . . . . . . . . . . . . . . . . . .
. . . . . . . . . 147 3.2 SYMMETRIC HYPERBOLIC SYSTEMS ON MANIFOLDS . .
. . . . . . . . . . . . . 157 3.3 OTHER NOTIONS OF HYPERBOLICITY . . . .
. . . . . . . . . . . . . . . . . . . . . . . 159 4 REDUCTIONS . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 164 4.1 HYPERBOLIC SYSTEMS FROM THE ADM EQUATIONS . . .
. . . . . . . . . . . 167 4.2 THE EINSTEIN*EULER SYSTEM . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 173 4.3 THE INITIAL BOUNDARY
VALUE PROBLEM . . . . . . . . . . . . . . . . . . . . . . 185 4.4 THE
EINSTEIN*DIRAC SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 193 4.5 REMARKS ON THE STRUCTURE OF THE CHARACTERISTIC SET . .
. . . . . . . 200 5 LOCAL EVOLUTION . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 201 5.1 LOCAL
EXISTENCE THEOREMS FOR THE EINSTEIN EQUATIONS . . . . . . . . 201 5.2
UNIQUENESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 204 5.3 CAUCHY STABILITY . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 5.4 MATTER
MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 207 CONTENTS XI 5.5 AN EXAMPLE OF AN ILL-POSED INITIAL
VALUE PROBLEM. . . . . . . . . . . 214 5.6 SYMMETRIES . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
216 6 OUTLOOK . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 217 REFERENCES . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 219 POST-NEWTONIAN GRAVITATIONAL RADIATION LUC
BLANCHET ................................................... 225 1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 225 1.1 ON APPROXIMATION METHODS IN
GENERAL RELATIVITY . . . . . . . . . . 225 1.2 FIELD EQUATIONS AND THE
NO-INCOMING-RADIATION CONDITION . . . 228 1.3 METHOD AND GENERAL
PHYSICAL PICTURE . . . . . . . . . . . . . . . . . . . . . 231 2
MULTIPOLE DECOMPOSITION . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 233 2.1 THE MATCHING EQUATION . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 233 2.2 THE FIELD IN
TERMS OF MULTIPOLE MOMENTS . . . . . . . . . . . . . . . . . 236 2.3
EQUIVALENCE WITH THE WILL*WISEMAN MULTIPOLE EXPANSION . . . . 238 3
SOURCE MULTIPOLE MOMENTS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 240 3.1 MULTIPOLE EXPANSION IN SYMMETRIC
TRACE-FREE FORM . . . . . . . . . 240 3.2 LINEARIZED APPROXIMATION TO
THE EXTERIOR FIELD . . . . . . . . . . . . . 241 3.3 DERIVATION OF THE
SOURCE MULTIPOLE MOMENTS . . . . . . . . . . . . . . . 242 4
POST-MINKOWSKIAN APPROXIMATION . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 244 4.1 MULTIPOLAR POST-MINKOWSKIAN ITERATION OF THE
EXTERIOR FIELD . 244 4.2 THE *CANONICAL* MULTIPOLE MOMENTS . . . . . . .
. . . . . . . . . . . . . . . 246 4.3 RETARDED INTEGRAL OF A MULTIPOLAR
EXTENDED SOURCE . . . . . . . . . 247 5 RADIATIVE MULTIPOLE MOMENTS . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 5.1
DEFINITION AND GENERAL STRUCTURE . . . . . . . . . . . . . . . . . . . .
. . . . . 249 5.2 THE RADIATIVE QUADRUPOLE MOMENT TO 3PN ORDER . . . . .
. . . . . 250 5.3 TAIL CONTRIBUTIONS IN THE TOTAL ENERGY FLUX. . . . . .
. . . . . . . . . . 251 6 POST-NEWTONIAN APPROXIMATION . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 253 6.1 THE INNER METRIC TO
2.5PN ORDER . . . . . . . . . . . . . . . . . . . . . . . . . 254 6.2
THE MASS-TYPE SOURCE MOMENT TO 2.5PN ORDER . . . . . . . . . . . . 256 7
POINT-PARTICLES . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 258 7.1 HADAMARD PARTIE FINIE
REGULARIZATION . . . . . . . . . . . . . . . . . . . . . 259 7.2
MULTIPOLE MOMENTS OF POINT-MASS BINARIES . . . . . . . . . . . . . . . .
. 261 7.3 EQUATIONS OF MOTION OF COMPACT BINARIES . . . . . . . . . . .
. . . . . . . 263 7.4 GRAVITATIONAL WAVEFORMS OF INSPIRALLING COMPACT
BINARIES . . . 265 8 CONCLUSION . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 DUALITY
AND HIDDEN SYMMETRIES IN GRAVITATIONAL THEORIES DIETER MAISON
.................................................. 273 1 INTRODUCTION .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 273 2 ELECTROMAGNETIC DUALITY . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 3 DUALITY IN
KA* LUZA*KLEIN THEORIES . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 279 3.1 DIMENSIONAL REDUCTION FROM D TO D DIMENSIONS . . . . .
. . . . . . . 280 3.2 REDUCTION TO D = 4 DIMENSIONS . . . . . . . . . .
. . . . . . . . . . . . . . . . . 282 3.3 REDUCTION TO D = 3 DIMENSIONS
. . . . . . . . . . . . . . . . . . . . . . . . . . . 285 XII CONTENTS
3.4 REDUCTION TO D = 2 DIMENSIONS . . . . . . . . . . . . . . . . . . .
. . . . . . . . 290 4 GEROCH GROUP . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 292 5 STATIONARY
BLACK HOLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 302 5.1 SPHERICALLY SYMMETRIC SOLUTIONS . . . . . . .
. . . . . . . . . . . . . . . . . . . 306 5.2 UNIQUENESS THEOREMS FOR
STATIC BLACK HOLES . . . . . . . . . . . . . . . 312 5.3 STATIONARY,
AXIALLY SYMMETRIC BLACK HOLES . . . . . . . . . . . . . . . . . 314 6
ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 316 7 NON-LINEAR * -MODELS AND SYMMETRIC
SPACES. . . . . . . . . . . . . . . . . . . . . 316 7.1 NON-COMPACT
RIEMANNIAN SYMMETRIC SPACES . . . . . . . . . . . . . . . 316 7.2
PSEUDO-RIEMANNIAN SYMMETRIC SPACES . . . . . . . . . . . . . . . . . . .
. 319 7.3 CONSISTENT TRUNCATIONS . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 319 8 STRUCTURE OF THE LIE ALGEBRA . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
TIME-INDEPENDENT GRAVITATIONAL FIELDS ROBERT BEIG, BERND SCHMIDT
..................................... 325 1 INTRODUCTION . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 325 2 FIELD EQUATIONS . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 327 2.1 GENERALITIES . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 327 2.2 AXIAL SYMMETRY . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 333 2.3 ASYMPTOTIC FLATNESS:
LICHNEROWICZ THEOREMS . . . . . . . . . . . . . . . 334 2.4 NEWTONIAN
LIMIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 339 2.5 EXISTENCE ISSUES AND THE NEWTONIAN LIMIT . . . . . .
. . . . . . . . . . . 340 3 FAR FIELDS . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
3.1 FAR-FIELD EXPANSIONS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 341 3.2 CONFORMAL TREATMENT OF INFINITY,
MULTIPOLE MOMENTS . . . . . . . . 344 4 GLOBAL ROTATING SOLUTIONS . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
4.1 LINDBLOM*S THEOREM . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 350 4.2 EXISTENCE OF STATIONARY ROTATING
AXI-SYMMETRIC FLUID BODIES . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 353 4.3 THE NEUGEBAUER*MEINEL
DISK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 5
GLOBAL NON-ROTATING SOLUTIONS . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 360 5.1 ELASTIC STATIC BODIES . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 360 5.2 ARE PERFECT
FLUIDS O (3)-SYMMETRIC? . . . . . . . . . . . . . . . . . . . . . . 362
5.3 SPHERICALLY SYMMETRIC, STATIC PERFECT FLUID SOLUTIONS . . . . . . .
365 5.4 SPHERICALLY SYMMETRIC, STATIC EINSTEIN*VLASOV SOLUTIONS . . . .
370 GRAVITATIONAL LENSING FROM A GEOMETRIC VIEWPOINT VOLKER PERLICK
.................................................. 373 1 INTRODUCTION .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 373 2 SOME BASIC NOTIONS OF SPACETIME GEOMETRY . .
. . . . . . . . . . . . . . . . . . 375 3 GRAVITATIONAL LENSING IN
ARBITRARY SPACETIMES . . . . . . . . . . . . . . . . . . 378 3.1
CONJUGATE POINTS AND CUT POINTS . . . . . . . . . . . . . . . . . . . .
. . . . . 381 3.2 THE GEOMETRY OF LIGHT CONES . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 385 3.3 CITERIA FOR MULTIPLE IMAGING . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 391 3.4 FERMAT*S
PRINCIPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 396 CONTENTS XIII 3.5 MORSE INDEX THEORY FOR FERMAT*S
PRINCIPLE . . . . . . . . . . . . . . . . . 399 4 GRAVITATIONAL LENSING
IN GLOBALLY HYPERBOLIC SPACETIMES . . . . . . . . . 403 4.1 CRITERIA FOR
MULTIPLE IMAGING IN GLOBALLY HYPERBOLIC SPACETIMES . . . . . . . . . . .
. . . . . . . . . . . . . 405 4.2 MORSE THEORY IN GLOBALLY HYPERBOLIC
SPACETIMES . . . . . . . . . . . 408 5 GRAVITATIONAL LENSING IN
ASYMPTOTICALLY SIMPLE AND EMPTY SPACETIMES . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 414 REFERENCES . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 422 J¨ URGEN EHLERS * BIBLIOGRAPHY
................................. 427
|
any_adam_object | 1 |
author_GND | (DE-588)121649067 (DE-588)121317374 |
building | Verbundindex |
bvnumber | BV012932456 |
callnumber-first | Q - Science |
callnumber-label | QC173 |
callnumber-raw | QC173.6 |
callnumber-search | QC173.6 |
callnumber-sort | QC 3173.6 |
callnumber-subject | QC - Physics |
classification_rvk | UD 8220 |
classification_tum | PHY 042f |
ctrlnum | (OCoLC)43311748 (DE-599)BVBBV012932456 |
dewey-full | 530.11 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.11 |
dewey-search | 530.11 |
dewey-sort | 3530.11 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01930nam a2200481 cb4500</leader><controlfield tag="001">BV012932456</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090507 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">991221s2000 gw |||| 01||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">958131511</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540670734</subfield><subfield code="c">Pp. : DM 149.00</subfield><subfield code="9">3-540-67073-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)43311748</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012932456</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC173.6</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.11</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UD 8220</subfield><subfield code="0">(DE-625)145543:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 042f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Einstein's field equations and their physical implications</subfield><subfield code="b">selected essays in honour of Jürgen Ehlers</subfield><subfield code="c">Bernd G. Schmidt (ed.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 433 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in physics</subfield><subfield code="v">540</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Einstein field equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Einstein-Feldgleichungen</subfield><subfield code="0">(DE-588)4013941-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Feldgleichung</subfield><subfield code="0">(DE-588)4131471-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4016928-5</subfield><subfield code="a">Festschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Feldgleichung</subfield><subfield code="0">(DE-588)4131471-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Einstein-Feldgleichungen</subfield><subfield code="0">(DE-588)4013941-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schmidt, Bernd G.</subfield><subfield code="d">1941-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)121649067</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ehlers, Jürgen</subfield><subfield code="d">1929-2008</subfield><subfield code="0">(DE-588)121317374</subfield><subfield code="4">hnr</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in physics</subfield><subfield code="v">540</subfield><subfield code="w">(DE-604)BV000003166</subfield><subfield code="9">540</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008805933&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008805933</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content (DE-588)4016928-5 Festschrift gnd-content |
genre_facet | Aufsatzsammlung Festschrift |
id | DE-604.BV012932456 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:36:18Z |
institution | BVB |
isbn | 3540670734 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008805933 |
oclc_num | 43311748 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-703 DE-91G DE-BY-TUM DE-706 DE-634 DE-83 |
owner_facet | DE-355 DE-BY-UBR DE-703 DE-91G DE-BY-TUM DE-706 DE-634 DE-83 |
physical | XIII, 433 S. |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer |
record_format | marc |
series | Lecture notes in physics |
series2 | Lecture notes in physics |
spelling | Einstein's field equations and their physical implications selected essays in honour of Jürgen Ehlers Bernd G. Schmidt (ed.) Berlin [u.a.] Springer 2000 XIII, 433 S. txt rdacontent n rdamedia nc rdacarrier Lecture notes in physics 540 Einstein field equations Einstein-Feldgleichungen (DE-588)4013941-4 gnd rswk-swf Feldgleichung (DE-588)4131471-2 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content (DE-588)4016928-5 Festschrift gnd-content Feldgleichung (DE-588)4131471-2 s DE-604 Einstein-Feldgleichungen (DE-588)4013941-4 s Schmidt, Bernd G. 1941- Sonstige (DE-588)121649067 oth Ehlers, Jürgen 1929-2008 (DE-588)121317374 hnr Lecture notes in physics 540 (DE-604)BV000003166 540 SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008805933&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Einstein's field equations and their physical implications selected essays in honour of Jürgen Ehlers Lecture notes in physics Einstein field equations Einstein-Feldgleichungen (DE-588)4013941-4 gnd Feldgleichung (DE-588)4131471-2 gnd |
subject_GND | (DE-588)4013941-4 (DE-588)4131471-2 (DE-588)4143413-4 (DE-588)4016928-5 |
title | Einstein's field equations and their physical implications selected essays in honour of Jürgen Ehlers |
title_auth | Einstein's field equations and their physical implications selected essays in honour of Jürgen Ehlers |
title_exact_search | Einstein's field equations and their physical implications selected essays in honour of Jürgen Ehlers |
title_full | Einstein's field equations and their physical implications selected essays in honour of Jürgen Ehlers Bernd G. Schmidt (ed.) |
title_fullStr | Einstein's field equations and their physical implications selected essays in honour of Jürgen Ehlers Bernd G. Schmidt (ed.) |
title_full_unstemmed | Einstein's field equations and their physical implications selected essays in honour of Jürgen Ehlers Bernd G. Schmidt (ed.) |
title_short | Einstein's field equations and their physical implications |
title_sort | einstein s field equations and their physical implications selected essays in honour of jurgen ehlers |
title_sub | selected essays in honour of Jürgen Ehlers |
topic | Einstein field equations Einstein-Feldgleichungen (DE-588)4013941-4 gnd Feldgleichung (DE-588)4131471-2 gnd |
topic_facet | Einstein field equations Einstein-Feldgleichungen Feldgleichung Aufsatzsammlung Festschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008805933&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000003166 |
work_keys_str_mv | AT schmidtberndg einsteinsfieldequationsandtheirphysicalimplicationsselectedessaysinhonourofjurgenehlers AT ehlersjurgen einsteinsfieldequationsandtheirphysicalimplicationsselectedessaysinhonourofjurgenehlers |