Programming for mathematicians:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2000
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XV, 429 S. Ill., graph. Darst. |
ISBN: | 354066422X |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV012839010 | ||
003 | DE-604 | ||
005 | 20200311 | ||
007 | t | ||
008 | 991027s2000 gw ad|| |||| 00||| ger d | ||
016 | 7 | |a 957680376 |2 DE-101 | |
020 | |a 354066422X |9 3-540-66422-X | ||
035 | |a (OCoLC)440997267 | ||
035 | |a (DE-599)BVBBV012839010 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a ger |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-20 |a DE-703 |a DE-91G |a DE-945 |a DE-355 |a DE-634 |a DE-83 |a DE-11 | ||
080 | |a 519.68 | ||
084 | |a ST 230 |0 (DE-625)143617: |2 rvk | ||
084 | |a ST 600 |0 (DE-625)143681: |2 rvk | ||
084 | |a MAT 036f |2 stub | ||
100 | 1 | |a Séroul, Raymond |e Verfasser |4 aut | |
240 | 1 | 0 | |a math-info. Informatique pour mathématiciens |
245 | 1 | 0 | |a Programming for mathematicians |c Raymond Séroul |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2000 | |
300 | |a XV, 429 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Universitext | |
650 | 0 | 7 | |a Beweisführung |0 (DE-588)4227233-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Programmierung |0 (DE-588)4076370-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | 1 | |a Beweisführung |0 (DE-588)4227233-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Programmierung |0 (DE-588)4076370-5 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008736169&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-008736169 |
Datensatz im Suchindex
_version_ | 1807504740904337408 |
---|---|
adam_text |
CONTENTS
1.
PROGRAMMING
PROVERBS
.
1
1.1.
ABOVE
ALL,
NO
TRICKS!
.
1
1.2.
DO
NOT
CHEWING
GUM
WHILE
CLIMBING
STAIRS
.
2
1.3.
NAME
THAT
WHICH
YOU
STILL
DON
'
T
KNOW
.
2
1.4.
TOMORROW,
THINGS
WILL
BE
BETTER;
THE
DAY
AFTER,
BETTER
STILL
.
2
1.5.
NEVER
EXECUTE
AN
ORDER
BEFORE
IT
IS
GIVEN
.
3
1.6.
DOCUMENT
TODAY
TO
AVOID
TEARS
TOMORROW
.
.
.
3
1.7.
DESCARTES
'
DISCOURSE
ON
THE
METHOD
.
3
2.
REVIEW
OF
ARITHMETIC
.
5
2.1.
EUCLIDEAN
DIVISION
.
5
2.2.
NUMERATION
SYSTEMS
.
6
2.3.
PRIME
NUMBERS
.
7
2.3.1.
THE
NUMBER
OF
PRIMES
SMALLER
THAN
A
GIVEN
REAL
NUMBER
.
8
2.4.
THE
GREATEST
COMMON
DIVISOR
.
9
2.4.1.
THE
BEZOUT
THEOREM
.
10
2.4.2.
GAUSS
'
S
LEMMA
.
10
2.5.
CONGRUENCES
.
11
2.6.
THE
CHINESE
REMAINDER
THEOREM
.
12
2.7.
THE
EULER
PHI
FUNCTION
.
14
2.8.
THE
THEOREMS
OF
FERMAT
AND
EULER
.
15
2.9.
WILSON
'
S
THEOREM
.
16
2.10.
QUADRATIC
RESIDUES
.
17
2.11.
PRIME
NUMBER
AND
SUM
OF
TWO
SQUARES
.
18
2.12.
THE
MOEBIUS
FUNCTION
.
19
2.13.
THE
FIBONACCI
NUMBERS
.
21
2.14.
REASONING
BY
INDUCTION
.
22
2.15.
SOLUTIONS
OF
THE
EXERCISES
.
25
3.
AN
ALGORITHMIC
DESCRIPTION
LANGUAGE
.
29
3.1.
IDENTIFIERS
.
30
3.2.
ARITHMETIC
EXPRESSIONS
.
31
3.2.1.
NUMBERS
.
31
3.2.2.
OPERATIONS
.
31
X
TABLE
OF
CONTENTS
3.2.3.
ARRAYS
.
32
3.2.4.
FUNCTION
CALLS
AND
PARENTHESES
.
32
3.3.
BOOLEAN
EXPRESSIONS
.
32
3.4.
STATEMENTS
AND
THEIR
SYNTAX
.
33
3.4.1.
ASSIGNMENTS
.
34
3.4.2.
CONDITIONALS
.
34
3.4.3.
FOR
LOOPS
.
35
3.4.4.
WHILE
LOOPS
.
35
3.4.5.
REPEAT
LOOPS
.
35
3.4.6.
SEQUENCES
OF
STATEMENTS
.36
3.4.7.
BLOCKS
OF
STATEMENTS
.36
3.4.8.
COMPLEX
STATEMENTS
.
37
3.4.9.
LAYOUT
ON
PAGE
AND
CONTROL
OF
SYNTAX
.
38
3.4.10.
TO
WHAT
DOES
THE
ELSE
BELONG?
.
40
3.4.11.
SEMICOLONS:
SOME
CLASSICAL
ERRORS
.
40
3.5.
THE
SEMANTICS
OF
STATEMENTS
.
42
3.5.1.
ASSIGNMENTS
.
42
3.5.2.
CONDITIONALS
.
42
3.5.3.
FIRST
TRANSLATIONS
.
43
3.5.4.
THE
BOUSTROPHEDON
ORDER
.
45
3.5.5.
THE
FOR
LOOP
.
47
3.5.6.
THE
WHILE
LOOP
.
48
3.5.7.
THE
REPEAT
LOOP
.
50
3.5.8.
EMBEDDED
LOOPS
.
51
3.6.
WHICH
LOOP
TO
CHOOSE?
.
51
3.6.1.
CHOOSING
A
FOR
LOOP
.
52
3.6.2.
CHOOSING
A
WHILE
LOOP
.
52
3.6.3.
CHOOSING
A
REPEAT
LOOP
.
52
3.6.4.
INSPECTING
ENTRANCES
AND
EXITS
.
52
3.6.5.
LOOPS
WITH
ACCIDENTS
.
54
3.6.6.
GAUSSIAN
ELIMINATION
.
55
3.6.7.
HOW
TO
GRAB
DATA
.
56
4.
HOW
TO
CREATE
AN
ALGORITHM
.
59
4.1.
THE
TRACE
OF
AN
ALGORITHM
.
59
4.2.
FIRST
METHOD:
RECYCLING
KNOWN
CODE
.
60
4.2.1.
POSTAGE
STAMPS
.
60
4.2.2.
HOW
TO
DETERMINE
WHETHER
A
POSTAGE
IS
REALIZABLE
.
61
4.2.3.
CALCULATING
THE
THRESHOLD
VALUE
.
62
4.3.
SECOND
METHOD:
USING
SEQUENCES
.64
4.3.1.
CREATION
OF
A
SIMPLE
ALGORITHM
.66
4.3.2.
THE
EXPONENTIAL
SERIES
.
67
4.3.3.
DECOMPOSITION
INTO
PRIME
FACTORS
.
69
4.3.4.
THE
LEAST
DIVISOR
FUNCTION
.
71
4.3.5.
CARDINALITY
OF
AN
INTERSECTION
.
71
TABLE
OF
CONTENTS
XI
4.3.6.
THE
CORDIC
ALGORITHM
.
74
4.4.
THIRD
METHOD:
DEFERED
WRITING
.
78
4.4.1.
CALCULATING
TWO
BIZARRE
FUNCTIONS
.
80
4.4.2.
STORAGE
OF
THE
FIRST
N
PRIME
NUMBERS
.
81
4.4.3.
LAST
RECOMMENDATIONS
.
84
4.5.
HOW
TO
PROVE
AN
ALGORITHM
.
85
4.5.1.
CRASHES
.
85
4.5.2.
INFINITE
LOOPS
.
85
4.5.3.
CALCULATING
THE
GCD
OF
TWO
NUMBERS
.
86
4.5.4.
A
MORE
COMPLICATED
EXAMPLE
.
86
4.5.5.
THE
VALIDITY
OF
A
RESULT
FURNISHED
BY
A
LOOP
.
87
4.6.
SOLUTIONS
OF
THE
EXERCISES
.
88
5.
ALGORITHMS
AND
CLASSICAL
CONSTRUCTIONS
.
91
5.1.
EXCHANGING
THE
CONTENTS
OF
TWO
VARIABLES
.
91
5.2.
DIVERSE
SUMS
.
92
5.2.1.
A
VERY
IMPORTANT
CONVENTION
.
92
5.2.2.
DOUBLE
SUMS
.
93
5.2.3.
SUMS
WITH
EXCEPTIONS
.
94
5.3.
SEARCHING
FOR
A
MAXIMUM
.
95
5.4.
SOLVING
A
TRIANGULAR
CRAMER
SYSTEM
.
96
5.5.
RAPID
CALCULATION
OF
POWERS
.
97
5.6.
CALCULATION
OF
THE
FIBONACCI
NUMBERS
.
98
5.7.
THE
NOTION
OF
A
STACK
.
99
5.8.
LINEAR
TRAVERSAL
OF
A
FINITE
SET
.
101
5.9.
THE
LEXICOGRAPHIC
ORDER
.
102
5.9.1.
WORDS
OF
FIXED
LENGTH
.
102
5.9.2.
WORDS
OF
VARIABLE
LENGTH
.
104
5.10.
SOLUTIONS
TO
THE
EXERCISES
.
105
6.
THE
PASCAL
LANGUAGE
.
109
6.1.
STORAGE
OF
THE
USUAL
OBJECTS
.
109
6.2.
INTEGER
ARITHMETIC
IN
PASCAL
.
110
6.2.1.
STORAGE
OF
INTEGERS
IN
PASCAL
.
110
6.3.
ARRAYS
IN
PASCAL
.
113
6.4.
DECLARATION
OF
AN
ARRAY
.
114
6.5.
PRODUCT
SETS
AND
TYPES
.
115
6.5.1.
PRODUCT
OF
EQUAL
SETS
.
115
6.5.2.
PRODUCT
OF
UNEQUAL
SETS
.
116
6.5.3.
COMPOSITE
TYPES
.
116
6.6.
THE
ROLE
OF
CONSTANTS
.
117
6.7.
LITTER
.
119
6.8.
PROCEDURES
.
119
6.8.1.
THE
DECLARATIVE
PART
OF
A
PROCEDURE
.
120
XII
TABLE
OF
CONTENTS
6.8.2.
PROCEDURE
CALLS
.
121
6.8.3.
COMMUNICATION
OF
A
PROCEDURE
WITH
THE
EXTERIOR
.
.
.
122
6.9.
VISIBILITY
OF
THE
VARIABLES
IN
A
PROCEDURE
.
124
6.10.
CONTEXT
EFFECTS
.
125
6.10.1.
FUNCTIONS
.
127
6.10.2.
PROCEDURE
OR
FUNCTION?
.
128
6.11.
PROCEDURES:
WHAT
THE
PROGRAM
SEEMS
TO
DO
.
129
6.11.1.
USING
THE
MODEL
.
133
6.12.
SOLUTIONS
OF
THE
EXERCISES
.
134
7.
HOW
TO
WRITE
A
PROGRAM
.
135
7.1.
INVERSE
OF
AN
ORDER
4
MATRIX
.
135
7.1.1.
THE
PROBLEM
.
136
7.1.2.
THEORETICAL
STUDY
.
136
7.1.3.
WRITING
THE
PROGRAM
.
138
7.1.4.
THE
FUNCTION
DET
.
140
7.1.5.
HOW
TO
TYPE
A
PROGRAM
.
143
7.2.
CHARACTERISTIC
POLYNOMIAL
OF
A
MATRIX
.
144
7.2.1.
THE
PROGRAM
LEVERRIER
.
147
7.3.
HOW
TO
WRITE
A
PROGRAM
.
152
7.4.
A
POORLY
WRITTEN
PROCEDURE
.
156
8.
THE
INTEGERS
.
159
8.1.
THE
EUCLIDEAN
ALGORITHM
.
159
8.1.1.
COMPLEXITY
OF
THE
EUCLIDEAN
ALGORITHM
.
160
8.2.
THE
BLANKINSHIP
ALGORITHM
.
161
8.3.
PERFECT
NUMBERS
.
163
8.4.
THE
LOWEST
DIVISOR
FUNCTION
.
165
8.5.
THE
MOEBIUS
FUNCTION
.
167
8.6.
THE
SIEVE
OF
ERATOSTHENES
.
169
8.6.1.
FORMULATION
OF
THE
ALGORITHM
.
171
8.6.2.
TRANSFORMING
THE
ALGORITHM
TO
A
PROGRAM
.
172
8.7.
THE
FUNCTION
PI(X)
.
175
8.7.1.
LEGENDRE
'
S
FORMULA
.
175
8.7.2.
IMPLEMENTATION
OF
LEGENDRE
'
S
FORMULA
.
178
8.7.3.
MEISSEL
'
S
FORMULA
.
179
8.8.
EGYPTIAN
FRACTIONS
.
181
8.8.1.
THE
PROGRAM
.
183
8.8.2.
NUMERICAL
RESULTS
.
186
8.9.
OPERATIONS
ON
LARGE
INTEGERS
.
187
8.9.1.
ADDITION
.
187
8.9.2.
SUBTRACTION
.
188
8.9.3.
MULTIPLICATION
.
189
8.9.4.
DECLARATIONS
.
190
TABLE
OF
CONTENTS
XIII
8.9.5.
THE
PROGRAM
.
191
8.10.
DIVISION
IN
BASE
B
.
194
8.10.1.
DESCRIPTION
OF
THE
DIVISION
ALGORITHM
.
194
8.10.2.
JUSTIFICATION
OF
THE
DIVISION
ALGORITHM
.
196
8.10.3.
EFFECTIVE
ESTIMATES
OF
INTEGER
PARTS
.
197
8.10.4.
A
GOOD
DIVISION
ALGORITHM
.
200
8.11.
SUMS
OF
FIBONACCI
NUMBERS
.
200
8.12.
ODD
PRIMES
AS
A
SUM
OF
TWO
SQUARES
.
203
8.13.
SUMS
OF
FOUR
SQUARES
.
207
8.14.
HIGHLY
COMPOSITE
NUMBERS
.
208
8.14.1.
SEVERAL
PROPERTIES
OF
HIGHLY
COMPOSITE
NUMBERS
.
,
.
210
8.14.2.
PRACTICAL
INVESTIGATION
OF
HIGHLY
COMPOSITE
INTEGERS
.
212
8.15.
PERMUTATIONS:
JOHNSON
'
S
'
ALGORITHM
.
213
8.15.1.
THE
PROGRAM
JOHNSON
.
215
8.16.
THE
COUNT
IS
GOOD
.
218
8.16.1.
SYNTACTIC
TREES
.
219
9.
THE
COMPLEX
NUMBERS
.
225
9.1.
THE
GAUSSIAN
INTEGERS
.
225
9.1.1.
EUCLIDEAN
DIVISION
.
226
9.1.2.
IRREDUCIBLES
.
226
9.1.3.
THE
PROGRAM
.
231
9.2.
BASES
OF
NUMERATION
IN
THE
GAUSSIAN
INTEGERS
.
234
9.2.1.
THE
MODULO
BETA
MAP
.
234
9.2.2.
HOW
TO
FIND
AN
EXACT
SYSTEM
OF
REPRESENTATIVES
.
235
9.2.3.
NUMERATION
SYSTEM
IN
BASE
BETA
.
236
9.2.4.
AN
ALGORITHM
FOR
EXPRESSION
IN
BASE
BETA
.
237
9.3.
MACHIN
FORMULAS
.
240
9.3.1.
UNIQUENESS
OF
A
MACHIN
FORMULA
.
242
9.3.2.
PROOF
OF
PROPOSITION
9.3.1
.
243
9.3.3.
THE
TODD
CONDITION
IS
NECESSARY
.
244
9.3.4.
THE
TODD
CONDITION
IS
SUFFICIENT
.
244
9.3.5.
KERN
'
S
ALGORITHM
.
245
9.3.6.
HOW
TO
GET
RID
OF
THE
ARCTANGENT
FUNCTION
.
249
9.3.7.
EXAMPLES
.
251
10.
POLYNOMIALS
.
253
10.1.
DEFINITIONS
.
253
10.2.
DEGREE
OF
A
POLYNOMIAL
.
254
10.3.
HOW
TO
STORE
A
POLYNOMIAL
.
254
10.4.
THE
CONVENTIONS
WE
ADOPT
.
256
10.5.
EUCLIDEAN
DIVISION
.
259
10.6.
EVALUATION
OF
POLYNOMIALS:
HOMER
'
S
METHOD
.
261
10.7.
TRANSLATION
AND
COMPOSITION
.
262
XIV
TABLE
OF
CONTENTS
10.7.1.
CHANGE
OF
ORIGIN
.
262
10.7.2.
COMPOSING
POLYNOMIALS
.
265
10.8.
CYCLOTOMIC
POLYNOMIALS
.
265
10.8.1.
FIRST
FORMULA
.
266
10.8.2.
SECOND
FORMULA
.
268
10.9.
LAGRANGE
INTERPOLATION
.
269
10.10.
BASIS
CHANGE
.
273
10.11.
DIFFERENTIATION
AND
DISCRETE
TAYLOR
FORMULAS
.
275
10.11.1.
DISCRETE
DIFFERENTIATION
.
275
10.12.
NEWTON-GIRARD
FORMULAS
.
278
10.13.
STABLE
POLYNOMIALS
.
280
10.14.
FACTORING
A
POLYNOMIAL
WITH
INTEGRAL
COEFFICIENTS
.
286
10.14.1.
WHY
INTEGER
(INSTEAD
OF
RATIONAL)
COEFFICIENTS?
.
.
.
286
10.14.2.
KRONECKER
'
S
FACTORIZATION
ALGORITHM
.
288
10.14.3.
USE
OF
STABLE
POLYNOMIALS
.
290
10.14.4.
THE
PROGRAM
.
291
10.14.5.
LAST
REMARKS
.
294
11.
MATRICES
.
297
11.1.
Z-LINEAR
ALGEBRA
.
297
11.1.1.
THE
BORDERED
MATRIX
TRICK
.
300
11.1.2.
GENERATORS
OF
A
SUBGROUP
.
301
11.1.3.
THE
BLANKINSHIP
ALGORITHM
.
301
11.1.4.
HERMITE
MATRICES
.
303
11.1.5.
THE
PROGRAM
HERMITE
.
305
11.1.6.
THE
INCOMPLETE
BASIS
THEOREM
.
312
11.1.7.
FINDING
A
BASIS
OF
A
SUBGROUP
.
316
11.2.
LINEAR
SYSTEMS
WITH
INTEGRAL
COEFFICIENTS
.
318
11.2.1.
THEORETICAL
RESULTS
.
318
11.2.2.
THE
CASE
OF
A
MATRIX
IN
COLUMN
ECHELON
FORM
.
318
11.2.3.
GENERAL
CASE
.
320
11.2.4.
CASE
OF
A
SINGLE
EQUATION
.
321
11.3.
EXPONENTIAL
OF
A
MATRIX:
PUTZER
'
S
ALGORITHM
.
323
11.4.
JORDAN
REDUCTION
.
326
11.4.1.
REVIEW
.
326
11.4.2.
REDUCTION
OF
A
NILPOTENT
ENDOMORPHISM
.
327
11.4.3.
THE
PITTTELKOW-RUNCKEL
ALGORITHM
.
329
11.4.4.
JUSTIFICATION
OF
THE
PITTELKOW-RUNCKEL
ALGORITHM
.
.
.
332
11.4.5.
A
COMPLETE
EXAMPLE
.
333
11.4.6.
PROGRAMMING
.
336
12.
RECURSION
.
337
12.1.
PRESENTATION
.
337
12.1.1.
TWO
SIMPLE
EXAMPLES
.
337
TABLE
OF
CONTENTS
XV
12.1.2.
MUTUAL
RECURSION
.
339
12.1.3.
ARBORESCENCE
OF
RECURSIVE
CALLS
.
340
12.1.4.
INDUCTION
AND
RECURSION
.
340
12.2.
THE
ACKERMANN
FUNCTION
.
343
12.3.
THE
TOWERS
OF
HANOI
.
345
12.4.
BAGUENAUDIER
.
348
12.5.
THE
HOFSTADTER
FUNCTION
.
351
12.6.
HOW
TO
WRITE
A
RECURSIVE
CODE
.
352
12.6.1.
SORTING
BY
DICHOTOMY
.
353
13.
ELEMENTS
OF
COMPILER
THEORY
.
359
13.1.
PSEUDOCODE
.
359
13.1.1.
DESCRIPTION
OF
PSEUDOCODE
.
360
13.1.2.
HOW
TO
COMPILE
A
PSEUDOCODE
PROGRAM
BY
HAND
.
.
365
13.1.3.
TRANSLATION
OF
A
CONDITIONAL
.
366
13.1.4.
TRANSLATION
OF
A
LOOP
.
368
13.1.5.
FUNCTION
CALLS
.
369
13.1.6.
A
VERY
EFFICIENT
TECHNIQUE
.
372
13.1.7.
PROCEDURE
CALLS
.
374
13.1.8.
THE
FACTORIAL
FUNCTION
.
377
13.1.9.
THE
FIBONACCI
NUMBERS
.
379
13.1.10.
THE
HOFSTADTER
FUNCTION
.
381
13.1.11.
THE
TOWERS
OF
HANOI
.
382
13.2.
A
PSEUDOCODE
INTERPRETER
.
385
13.3.
HOW
TO
ANALYZE
AN
ARITHMETIC
EXPRESSION
.
400
13.3.1.
ARITHMETIC
EXPRESSIONS
.
401
13.3.2.
HOW
TO
RECOGNIZE
AN
ARITHMETIC
EXPRESSION
.
404
13.4.
HOW
TO
EVALUATE
AN
ARITHMETIC
EXPRESSION
.
410
13.5.
HOW
TO
COMPILE
AN
ARITHMETIC
EXPRESSION
.
415
13.5.1.
POLISH
NOTATION
.
415
13.5.2.
A
COMPILER
FOR
ARITHMETIC
EXPRESSIONS
.
420
REFERENCES
.
423
INDEX
425 |
any_adam_object | 1 |
author | Séroul, Raymond |
author_facet | Séroul, Raymond |
author_role | aut |
author_sort | Séroul, Raymond |
author_variant | r s rs |
building | Verbundindex |
bvnumber | BV012839010 |
classification_rvk | ST 230 ST 600 |
classification_tum | MAT 036f |
ctrlnum | (OCoLC)440997267 (DE-599)BVBBV012839010 |
discipline | Informatik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV012839010</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200311</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">991027s2000 gw ad|| |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">957680376</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">354066422X</subfield><subfield code="9">3-540-66422-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)440997267</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012839010</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="080" ind1=" " ind2=" "><subfield code="a">519.68</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 230</subfield><subfield code="0">(DE-625)143617:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 600</subfield><subfield code="0">(DE-625)143681:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 036f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Séroul, Raymond</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">math-info. Informatique pour mathématiciens</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Programming for mathematicians</subfield><subfield code="c">Raymond Séroul</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 429 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beweisführung</subfield><subfield code="0">(DE-588)4227233-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Programmierung</subfield><subfield code="0">(DE-588)4076370-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Beweisführung</subfield><subfield code="0">(DE-588)4227233-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Programmierung</subfield><subfield code="0">(DE-588)4076370-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008736169&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008736169</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV012839010 |
illustrated | Illustrated |
indexdate | 2024-08-16T01:14:07Z |
institution | BVB |
isbn | 354066422X |
language | German English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008736169 |
oclc_num | 440997267 |
open_access_boolean | |
owner | DE-20 DE-703 DE-91G DE-BY-TUM DE-945 DE-355 DE-BY-UBR DE-634 DE-83 DE-11 |
owner_facet | DE-20 DE-703 DE-91G DE-BY-TUM DE-945 DE-355 DE-BY-UBR DE-634 DE-83 DE-11 |
physical | XV, 429 S. Ill., graph. Darst. |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer |
record_format | marc |
series2 | Universitext |
spelling | Séroul, Raymond Verfasser aut math-info. Informatique pour mathématiciens Programming for mathematicians Raymond Séroul Berlin [u.a.] Springer 2000 XV, 429 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Universitext Beweisführung (DE-588)4227233-6 gnd rswk-swf Programmierung (DE-588)4076370-5 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Mathematik (DE-588)4037944-9 s Beweisführung (DE-588)4227233-6 s DE-604 Programmierung (DE-588)4076370-5 s DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008736169&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Séroul, Raymond Programming for mathematicians Beweisführung (DE-588)4227233-6 gnd Programmierung (DE-588)4076370-5 gnd Mathematik (DE-588)4037944-9 gnd |
subject_GND | (DE-588)4227233-6 (DE-588)4076370-5 (DE-588)4037944-9 (DE-588)4123623-3 |
title | Programming for mathematicians |
title_alt | math-info. Informatique pour mathématiciens |
title_auth | Programming for mathematicians |
title_exact_search | Programming for mathematicians |
title_full | Programming for mathematicians Raymond Séroul |
title_fullStr | Programming for mathematicians Raymond Séroul |
title_full_unstemmed | Programming for mathematicians Raymond Séroul |
title_short | Programming for mathematicians |
title_sort | programming for mathematicians |
topic | Beweisführung (DE-588)4227233-6 gnd Programmierung (DE-588)4076370-5 gnd Mathematik (DE-588)4037944-9 gnd |
topic_facet | Beweisführung Programmierung Mathematik Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008736169&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT seroulraymond mathinfoinformatiquepourmathematiciens AT seroulraymond programmingformathematicians |