Optical solitons: theoretical challenges and industrial perspectives:
Gespeichert in:
Format: | Tagungsbericht Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London
Springer
1999
Les Ulis ; Cambridge MA EDP Sciences |
Schriftenreihe: | Centre de Physique des Houches
12 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XVII, 384 S. Ill., graph. Darst. |
ISBN: | 3540663142 2868834108 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV012807225 | ||
003 | DE-604 | ||
005 | 20000711 | ||
007 | t | ||
008 | 991005s1999 gw ad|| |||| 10||| eng d | ||
020 | |a 3540663142 |c kart. : DM 129.00 |9 3-540-66314-2 | ||
020 | |a 2868834108 |c (EDP Sciences) kart. |9 2-86883-410-8 | ||
035 | |a (OCoLC)845342097 | ||
035 | |a (DE-599)BVBBV012807225 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-703 | ||
084 | |a UP 3700 |0 (DE-625)146387: |2 rvk | ||
245 | 1 | 0 | |a Optical solitons: theoretical challenges and industrial perspectives |c LesHouches Workshop, September 28 - October 2, 1998. Ed. V. E. Zakharov ; S. Wabnitz. [Centre de Physique LesHouches] |
264 | 1 | |a Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London |b Springer |c 1999 | |
264 | 1 | |a Les Ulis ; Cambridge MA |b EDP Sciences | |
300 | |a XVII, 384 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centre de Physique des Houches |v 12 | |
500 | |a Literaturangaben | ||
650 | 0 | 7 | |a Soliton |0 (DE-588)4135213-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Optik |0 (DE-588)4042096-6 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 1998 |z Les Houches |2 gnd-content | |
689 | 0 | 0 | |a Soliton |0 (DE-588)4135213-0 |D s |
689 | 0 | 1 | |a Nichtlineare Optik |0 (DE-588)4042096-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Zacharov, Vladimir E. |d 1939-2023 |e Sonstige |0 (DE-588)121396797 |4 oth | |
711 | 2 | |a Les Houches Workshop |d 1998 |c Les Houches |j Sonstige |0 (DE-588)2177314-2 |4 oth | |
830 | 0 | |a Centre de Physique des Houches |v 12 |w (DE-604)BV011876452 |9 12 | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008710786&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-008710786 |
Datensatz im Suchindex
_version_ | 1804127479800004608 |
---|---|
adam_text | CONTENTS LECTURE 1 FUNDAMENTALS OF OPTICAL SOLITON THEORY IN FIBERS BY
A. HASEGAWA 1. INTRODUCTION
..................................................................................
1 2. ELECTROMAGNETIC WAVES IN DIELECTRIC
MATERIALS.................................... 1 2.1 POLARIZATION EFFECTS
................................................................. 1 2.2
PLANE ELECTROMAGNETIC WAVES IN DIELECTRIC MATERIALS.....................
3 2.3 KERR EFFECT AND KERR
COEFFICIENT................................................. 5 2.4
DIELECTRIC WAVEGUIDES
............................................................. 6 3.
ENVELOPE OF ELECTROMAGNETIC WAVE IN DIELECTRIC
MATERIALS.................... 10 3.1 LIGHTWAVE ENVELOPE IN FIBERS *
DERIVATION OF NONLINEAR SCHROEDINGER EQUATION
.............................................................. 10 3.2
EVOLUTION OF THE WAVE PACKET DUE TO THE GROUP VELOCITY DISPERSION 12 3.3
EVOLUTION OF WAVE PACKET DUE TO THE NONLINEARITY
........................ 14 3.4 LAX
THEOREM...........................................................................
15 3.5 THE SOLITON SOLUTION OF THE NONLINEAR SCHROEDINGER EQUATION
.......... 15 4. ULTRAFAST COMMUNICATION BASED ON OPTICAL SOLITONS
............................. 16 5. CONCLUSION
...................................................................................
18 LECTURE 2 HAMILTONIAN THEORY OF BAECKLUND TRANSFORMATION BY V.G.
MARIKHIN AND A.B. SHABAT 1. INTRODUCTION
..................................................................................
19 2. LATTICE EQUATIONS
...........................................................................
22 3. CANONICAL BAECKLUND TRANSFORMATIONS
................................................ 25 4. FIRST INTEGRALS
................................................................................
27 X LECTURE 3 STABILITY OF SOLITONS BY E.A. KUZNETSOV 1. INTRODUCTION
..................................................................................
31 2. LYAPUNOV STABILITY
.........................................................................
33 2.1 NONLINEAR SCHROEDINGER EQUATION
............................................... 33 2.2 THE THREE-WAVE
SYSTEM ............................................................ 36
2.3 SOLITON SOLUTIONS OF THE 3-WAVE SYSTEM
...................................... 39 2.4 NONLINEAR STABILITY
.................................................................. 41 3.
LINEAR STABILITY
..............................................................................
43 3.1 LINEAR STABILITY FOR 1D NLS
SOLITONS.......................................... 43 3.2 SOLITONS FOR
THE FF-SH INTERACTION ............................................ 46
LECTURE 4 CHAOTIC DYNAMICS OF OPTICAL SOLITONS BY F.KH. ABDULLAEV 1.
INTRODUCTION
..................................................................................
51 2. VARIATIONAL APPROACH TO SOLITONS DYNAMICS IN RANDOM MEDIA
................ 52 2.1 OPTICAL SOLITONS IN MEDIA WITH FLUCTUATING
QUADRATIC POTENTIAL ....... 53 2.2 SPATIAL SOLITON IN ARRAY WITH
FLUCTUATING PARAMETERS ..................... 54 2.3 A RANDOM KEPLER
PROBLEM ....................................................... 55 3.
INVERSE SCATTERING TRANSFORM TECHNIQUE FOR SOLITONS IN RANDOM MEDIA ....
56 3.1 SINGLE SOLITON PROPAGATION IN RANDOM
MEDIA............................... 56 3.2 INTERACTION OF OPTICAL
SOLITONS IN RANDOM MEDIA........................... 59 4. CONCLUSION
...................................................................................
61 LECTURE 5 VARIATIONALISM AND EMPIRIO-CRITICISM. (EXACT AND
VARIATIONAL APPROACHES TO FIBRE OPTICS EQUATIONS) BY A.V. MIKHAILOV 1.
INTRODUCTION
..................................................................................
63 2. VARIATIONAL APPROACH
......................................................................
64 3. WHAT IS WRONG WITH THE VARIATIONAL APPROACH
.................................... 68 CONTENTS XI LECTURE 6
PROPAGATION OF OPTICAL PULSES IN NONLINEAR SYSTEMS WITH VARYING
DISPERSION BY V.E. ZAKHAROV 1. INTRODUCTION
..................................................................................
73 2. BASIC MODEL
..................................................................................
74 3. EFFECTIVE HAMILTONIAN
.................................................................... 77
4. MONOCHROMATIC WAVE AND ITS
STABILITY............................................... 81 5. WEAK
DISPERSION MANAGEMENT
......................................................... 82 6. STRENG
DISPERSION MANAGEMENT (SDM)
............................................. 85 7. SOLITONS AND THEIR
STABILITY ..............................................................
87 LECTURE 7 DISPERSION-MANAGED SOLITONS BY S.K. TURITSYN, N.J. DORAN,
J.H.B. NIJHOF, V.K. MEZENTSEV, T. SCHAEFER AND W. FORYSIAK 1.
INTRODUCTION
..................................................................................
91 2. BASIC EQUATIONS
.............................................................................
94 3. LINEAR SOLUTION AND QUALITATIVE DESCRIPTION OF DM SOLITONS
.................. 96 4. DM PULSE EVOLUTION OVER ONE
PERIOD................................................. 98 4.1
ROOT-MEAN-SQUARE MOMENTUM EQUATIONS ...................................
98 4.2 POWER ENHANCEMENT
................................................................ 105 4.3
HOW TO FIND THE DM SOLITON NUMERICALLY
.................................... 106 5. A PATH-AVERAGE THEORY OF DM
SOLITONS IN THE TIME DOMAIN................... 106 6. PATH-AVERAGED
EQUATIONS IN THE SPECTRAL DOMAIN ................................. 110
7. CONCLUSIONS
..................................................................................
112 LECTURE 8 DISPERSION-MANAGED SOLITONS: APPLICATIONS TO TERABIT/S
TRANSMISSION OVER TRANSOCEANIC DISTANCES BY T. GEORGES INTRODUCTION
.......................................................................................
117 MODELLING
..........................................................................................
119 XII SINGLE PULSE
PROPAGATION.................................................................
119 PERTURBATION
..................................................................................
125
EXPERIMENTS.......................................................................................
135 SET-UP
..........................................................................................
135 SPECTRUM EVOLUTION
........................................................................
136 PHASE DIAGRAM
...............................................................................
136 SYSTEM MARGIN
..............................................................................
136 COMPARISON TO A SOLITON TRANSMISSION SYSTEM WITH CONSTANT DISPERSION
. 139 NARROW BAND 1.02 TBIT/S ( 51 * 20 GBIT/S) SOLITON DWDM
TRANSMISSION OVER 1000 KM OF STANDARD
FIBRE........................................................ 140
CONCLUSION
........................................................................................
141 LECTURE 9 NONLINEAR PULSES IN ULTRA-FAST OPTICAL COMMUNICATIONS BY
V. CAUTAERTS, Y. KODAMA, A. MARUTA AND H. SUGAHARA 1. INTRODUCTION
..................................................................................
147 2. THE DM
SOLITONS............................................................................
148 2.1 THE LAGRANGIAN
METHOD........................................................... 149
2.2 HERMITE-GAUSSIAN ANSATZ
......................................................... 151 3. THE DM
SOLITONS IN WDM
.............................................................. 153 3.1
MECHANISM OF FREQUENCY SHIFT FOR DM SOLITON ............................
153 3.2 OPTIMAL ALLOCATION OF AMPLIFIER
................................................. 156 3.3 STATISTICAL
ANALYSIS OF COLLISION INDUCED TIMING JITTER .................... 158 4.
NRZ PULSE
PROPAGATION...................................................................
161 4.1 THE NLS-WHITHAM EQUATIONS
................................................... 163 4.2 CONTROL OF
NRZ PULSE..............................................................
165 LECTURE 10 SOLITON WAVELENGTH-DIVISION-MULTIPLEXING SYSTEM: FROM
NUMERICAL DESIGN TO RECIRCULATING LOOP EXPERIMENTS BY J.-P. HAMAIDE, B.
BIOTTEAU, F. PITEL AND E. DESURVIRE 1. INTRODUCTION
..................................................................................
171 2. SOLITON TRANSMISSION OVER DISPERSION-MANAGED SYSTEMS
...................... 173 CONTENTS XIII 3. RESULTS FROM THE
ANALYTICAL/BASIC NUMERICAL TOOL ................................ 175 4.
RESULTS FROM THE NUMERICAL TOOL
....................................................... 177 5. RESULTS
FROM THE EXPERIMENTAL
TOOL................................................... 178 6.
CONCLUSION
...................................................................................
181 LECTURE 11 MODE-LOCKED FIBER RING LASERS AND FIBER RING MEMORIES BY
H.A. HAUS 1. INTRODUCTION
..................................................................................
183 2. THE PASSIVELY MODE-LOCKED FIBER RING LASER AND THE MASTER
EQUATION ..... 184 3. HARMONIC MODELOCKING AND THE MAKINGS OF AN
ALL-OPTICAL MEMORY....... 190 4. THE FIRST ORDER SOLITON
.....................................................................
199 5. PERTURBATION THEORY OF
SOLITONS......................................................... 200 6.
THE STRETCHED PULSE FIBER RING LASER
................................................... 208 LECTURE 12
MODULATIONAL INSTABILITIES IN PASSIVE CAVITIES: THEORY AND EXPERIMENT BY
M. HAELTERMAN AND S. COEN 1. INTRODUCTION
..................................................................................
215 2. BASIC PROPERTIES OF THE NONLINEAR FIBER RESONATOR
................................ 217 3. THE EFFECTS OF DISPERSION:
THEORY .................................................... 222 3.1
CW-MI AND THE MI-INDUCED UP-SWITCHING PROCESS........................
223 3.2 PERIOD-DOUBLING MI
................................................................ 225 4.
EXPERIMENTAL
RESULTS.......................................................................
226 4.1 PERIOD-DOUBLING MI
................................................................ 227 4.2
CW-MI AND THE MI-INDUCED UP-SWITCHING PROCESS........................
229 5. CONCLUSION
...................................................................................
230 XIV LECTURE 13 RECENT DEVELOPMENTS IN THE THEORY OF OPTICAL GAP
SOLITONS BY S. TRILLO, C. CONTI, A. DE ROSSI AND G. ASSANTO 1.
INTRODUCTION
..................................................................................
233 2. COUPLED-MODE
MODELS....................................................................
234 3.
STABILITY........................................................................................
236 4. QUADRATIC GAP SOLITONS
.................................................................... 242
5. CONCLUSIONS
..................................................................................
246 LECTURE 14 VECTOR MODULATIONAL INSTABILITIES AND SOLITON EXPERIMENTS
BY G. MILLOT, S. PITOIS, E. SEVE, P. TCHOFO DINDA, P. GRELU, S. WABNITZ,
M. HAELTERMAN AND S. TRILLO 1. INTRODUCTION
..................................................................................
249 2. OBSERVATION OF VECTOR MI FOR NORMAL
DISPERSION................................. 250 2.1 HIGH-BIREFRINGENCE
FIBER .......................................................... 250 2.2
LOW-BIREFRINGENCE FIBER
........................................................... 251 2.3
BIMODAL FIBER
.........................................................................
252 3. MI GAIN SPECTRA FROM LINEAR STABILITY ANALYSIS
.................................... 252 3.1 HIGH-BIREFRINGENCE FIBER
.......................................................... 253 3.2
LOW-BIREFRINGENCE FIBER
........................................................... 253 3.3
BIMODAL FIBER
.........................................................................
254 4. INDUCED VECTOR MI AND SOLITON GENERATION
......................................... 255 4.1 HIGH-BIREFRINGENCE
FIBER .......................................................... 255 4.2
LOW-BIREFRINGENCE FIBER
........................................................... 258 4.3
BIMODAL FIBER
.........................................................................
260 5. CONCLUSIONS
..................................................................................
262 LECTURE 15 TRANSIENT RAMAN AMPLIFICATION BY J. LEON AND A.V.
MIKHAILOV 1. INTRODUCTION
..................................................................................
265 CONTENTS XV 2. DERIVATION OF THE SRS SYSTEM
.......................................................... 269 3. STEADY
STATE REGIME
........................................................................
273 4. TRANSIENT SRS: A COMPLETE SOLUTION
................................................. 274 5. RAMAN SOLITON
GENERATION
............................................................... 276 6.
STOKES PHASE FLIPS AND THE RAMAN SPIKE
............................................ 277 7. THE RAMAN SPIKE IN
THE TIME DOMAIN................................................ 278 8.
CONCLUSION
...................................................................................
280 LECTURE 16 SELF-STRUCTURATION OF THREE-WAVE DISSIPATIVE SOLITONS IN
CW-PUMPED OPTICAL CAVITIES BY C. MONTES, A. PICOZZI AND M. HAELTERMAN 1.
INTRODUCTION
..................................................................................
283 2. THREE-WAVE MODEL
.........................................................................
284 3. TWO-WAVE ADIABATIC APPROXIMATION
.................................................. 286 4. SELF-PULSING
IN A CAVITY
................................................................... 289
LECTURE 17 THE DESCRIPTION OF THE ULTRASHORT PULSE PROPAGATION IN
NON-LINEAR MEDIA UNDER QUASI-RESONANCE CONDITION BY A.I. MAIMITSOV 1.
INTRODUCTION
..................................................................................
293 2. MAXWELL-BLOCH, RMB, AND SVEPA EQUATIONS
................................... 295 3. SOLUTION OF THE BLOCH
EQUATION ........................................................ 297 4.
SCALAR WAVE EQUATIONS
.................................................................... 299
4.1 NON-LINEAR WAVE EQUATION
........................................................ 299 4.2
UNIDIRECTIONAL NON-LINEAR WAVE (MKDV EQUATION) .......................
302 4.3 NON-LINEAR WAVE IN SVEPA
...................................................... 303 5. VECTOR
WAVES
.................................................................................
304 5.1 GENERALISED MAXWELL-BLOCH EQUATIONS
...................................... 305 5.2 SOLUTION OF THE
GENERALISED BLOCH EQUATIONS ............................... 305 5.3
VECTOR NON-LINEAR WAVE EQUATION
............................................... 307 5.4 UNIDIRECTIONAL
VECTOR NON-LINEAR WAVES...................................... 308 XVI
5.5 POLARISED QUASI-MONOCHROMATIC NON-LINEAR WAVE (VECTOR NLS EQUATION)
............................................................. 309 6.
CONCLUSION
...................................................................................
310 LECTURE 18 BRIGHT SPATIAL SOLITON INTERACTIONS BY G.I. STEGEMAN AND
M. SEGEV 1. INTRODUCTION
..................................................................................
313 2. COHERENT INTERACTIONS: BASIC THEORETICAL
PROPERTIES............................. 316 2.1 KERR NONLINEARITIES
.................................................................. 317
2.2 SATURATING NONLINEARITIES
.......................................................... 321 3.
COHERENT INTERACTIONS: EXPERIMENTS
................................................. 322 4. INCOHERENT
SOLITON
INTERACTIONS.........................................................
324 5. FULL 3D SOLITON INTERACTIONS
............................................................. 326 6.
ANISOTROPIE SOLITON INTERACTIONS
....................................................... 329 7. SUMMARY
......................................................................................
330 LECTURE 19 SPATIAL SOLITONS IN SATURATING NONLINEAR MATERIALS BY B.
LUTHER-DAVIES, V. TIKHONENKO, J. CHRISTOU, W. KROLIKOWSKI, Y. KIVSHAR
AND N. AKMEDIEV 1. INTRODUCTION
..................................................................................
335 2. DARK AND BRIGHT SPATIAL SOLITONS
....................................................... 338 3.
SATURATING NONLINEARITIES
................................................................. 340 4.
EXPERIMENTAL DEMONSTRATIONS
.......................................................... 341 5.
CONCLUSIONS
..................................................................................
346 LECTURE 20 DISCRETE SOLITONS IN NONLINEAR WAVEGUIDE ARRAYS BY F.
LEDERER AND J.S. AITCHISON 1. INTRODUCTION
..................................................................................
349 2. BASIC PROPERTIES OFWAVEGUIDE ARRAYS
................................................ 352 CONTENTS XVII 2.1
EVOLUTION EQUATIONS
................................................................ 352 2.2
LINEAR PROPERTIES * *DISCRETE DIFFRACTION*
................................... 353 2.3 NONLINEAR PROPERTIES *
MODULATIONAL INSTABILITY........................... 354 3. DISCRETE
SOLITONS
...........................................................................
355 3.1 MODERATELY LOCALIZED BRIGHT SOLITONS * BASIC PROPERTIES
................ 355 3.2 MODERATELY LOCALIZED BRIGHT SOLITONS *
SELF-TRAPPING AND SWITCHING 358 3.3 STRONGLY LOCALIZED DISCRETE SOLITONS
* PROPERTIES AND STABILITY ....... 359 4. FURTHER
STUDIES...............................................................................
360 5. EXPERIMENTS IN NONLINEAR WAVEGUIDE
ARRAYS....................................... 361 6. CONCLUSIONS
..................................................................................
364 LECTURE 21 SOLITONS IN CAVITIES WITH QUADRATIC NONLINEARITIES BY
W.E. TORRUELLAS, P.S. JIAN, S. TRILLO, M. HAELTERMAN, U. PESCHEL AND F.
LEDERER INTRODUCTION
.......................................................................................
367 1. THE CASE OF QUADRATIC NONLINEARITIES
................................................. 368 2. WHY
CAVITIES?................................................................................
369 3. MULTIDIMENSIONAL SPATIAL SOLITONS IN OPTICAL CAVITIES
........................... 370 4. OPTICAL BULLETS IN NONLINEAR OPTICAL
CAVITIES ....................................... 370 5. TEMPORAL
SOLITONS IN SINGLY RESONANT OPTICAL PARAMETRIC OSCILLATORS....... 371 6.
CONCLUSION
...................................................................................
379
|
any_adam_object | 1 |
author_GND | (DE-588)121396797 |
building | Verbundindex |
bvnumber | BV012807225 |
classification_rvk | UP 3700 |
ctrlnum | (OCoLC)845342097 (DE-599)BVBBV012807225 |
discipline | Physik |
format | Conference Proceeding Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01973nam a2200433 cb4500</leader><controlfield tag="001">BV012807225</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20000711 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">991005s1999 gw ad|| |||| 10||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540663142</subfield><subfield code="c">kart. : DM 129.00</subfield><subfield code="9">3-540-66314-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">2868834108</subfield><subfield code="c">(EDP Sciences) kart.</subfield><subfield code="9">2-86883-410-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)845342097</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012807225</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 3700</subfield><subfield code="0">(DE-625)146387:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optical solitons: theoretical challenges and industrial perspectives</subfield><subfield code="c">LesHouches Workshop, September 28 - October 2, 1998. Ed. V. E. Zakharov ; S. Wabnitz. [Centre de Physique LesHouches]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London</subfield><subfield code="b">Springer</subfield><subfield code="c">1999</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Les Ulis ; Cambridge MA</subfield><subfield code="b">EDP Sciences</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 384 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centre de Physique des Houches</subfield><subfield code="v">12</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Soliton</subfield><subfield code="0">(DE-588)4135213-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Optik</subfield><subfield code="0">(DE-588)4042096-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1998</subfield><subfield code="z">Les Houches</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Soliton</subfield><subfield code="0">(DE-588)4135213-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineare Optik</subfield><subfield code="0">(DE-588)4042096-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zacharov, Vladimir E.</subfield><subfield code="d">1939-2023</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)121396797</subfield><subfield code="4">oth</subfield></datafield><datafield tag="711" ind1="2" ind2=" "><subfield code="a">Les Houches Workshop</subfield><subfield code="d">1998</subfield><subfield code="c">Les Houches</subfield><subfield code="j">Sonstige</subfield><subfield code="0">(DE-588)2177314-2</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Centre de Physique des Houches</subfield><subfield code="v">12</subfield><subfield code="w">(DE-604)BV011876452</subfield><subfield code="9">12</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008710786&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008710786</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 1998 Les Houches gnd-content |
genre_facet | Konferenzschrift 1998 Les Houches |
id | DE-604.BV012807225 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:34:00Z |
institution | BVB |
institution_GND | (DE-588)2177314-2 |
isbn | 3540663142 2868834108 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008710786 |
oclc_num | 845342097 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | XVII, 384 S. Ill., graph. Darst. |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer EDP Sciences |
record_format | marc |
series | Centre de Physique des Houches |
series2 | Centre de Physique des Houches |
spelling | Optical solitons: theoretical challenges and industrial perspectives LesHouches Workshop, September 28 - October 2, 1998. Ed. V. E. Zakharov ; S. Wabnitz. [Centre de Physique LesHouches] Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London Springer 1999 Les Ulis ; Cambridge MA EDP Sciences XVII, 384 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Centre de Physique des Houches 12 Literaturangaben Soliton (DE-588)4135213-0 gnd rswk-swf Nichtlineare Optik (DE-588)4042096-6 gnd rswk-swf (DE-588)1071861417 Konferenzschrift 1998 Les Houches gnd-content Soliton (DE-588)4135213-0 s Nichtlineare Optik (DE-588)4042096-6 s DE-604 Zacharov, Vladimir E. 1939-2023 Sonstige (DE-588)121396797 oth Les Houches Workshop 1998 Les Houches Sonstige (DE-588)2177314-2 oth Centre de Physique des Houches 12 (DE-604)BV011876452 12 SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008710786&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Optical solitons: theoretical challenges and industrial perspectives Centre de Physique des Houches Soliton (DE-588)4135213-0 gnd Nichtlineare Optik (DE-588)4042096-6 gnd |
subject_GND | (DE-588)4135213-0 (DE-588)4042096-6 (DE-588)1071861417 |
title | Optical solitons: theoretical challenges and industrial perspectives |
title_auth | Optical solitons: theoretical challenges and industrial perspectives |
title_exact_search | Optical solitons: theoretical challenges and industrial perspectives |
title_full | Optical solitons: theoretical challenges and industrial perspectives LesHouches Workshop, September 28 - October 2, 1998. Ed. V. E. Zakharov ; S. Wabnitz. [Centre de Physique LesHouches] |
title_fullStr | Optical solitons: theoretical challenges and industrial perspectives LesHouches Workshop, September 28 - October 2, 1998. Ed. V. E. Zakharov ; S. Wabnitz. [Centre de Physique LesHouches] |
title_full_unstemmed | Optical solitons: theoretical challenges and industrial perspectives LesHouches Workshop, September 28 - October 2, 1998. Ed. V. E. Zakharov ; S. Wabnitz. [Centre de Physique LesHouches] |
title_short | Optical solitons: theoretical challenges and industrial perspectives |
title_sort | optical solitons theoretical challenges and industrial perspectives |
topic | Soliton (DE-588)4135213-0 gnd Nichtlineare Optik (DE-588)4042096-6 gnd |
topic_facet | Soliton Nichtlineare Optik Konferenzschrift 1998 Les Houches |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008710786&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV011876452 |
work_keys_str_mv | AT zacharovvladimire opticalsolitonstheoreticalchallengesandindustrialperspectives AT leshouchesworkshopleshouches opticalsolitonstheoreticalchallengesandindustrialperspectives |