A mathematical primer on groundwater flow: an introduction to the mathematical and physical concepts of saturated flow in the subsurface
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Upper Saddle River, NJ
Prentice Hall
1999
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | X, 230 S. graph. Darst. |
ISBN: | 0138964998 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV012772548 | ||
003 | DE-604 | ||
005 | 20231023 | ||
007 | t | ||
008 | 990921s1999 d||| |||| 00||| eng d | ||
020 | |a 0138964998 |9 0-13-896499-8 | ||
035 | |a (OCoLC)39464771 | ||
035 | |a (DE-599)BVBBV012772548 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-19 |a DE-634 | ||
050 | 0 | |a GB1197.7 | |
082 | 0 | |a 551.49/01/5118 |2 21 | |
084 | |a TI 8235 |0 (DE-625)162574: |2 rvk | ||
084 | |a RB 10354 |0 (DE-625)142220:12705 |2 rvk | ||
100 | 1 | |a Hermance, John F. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A mathematical primer on groundwater flow |b an introduction to the mathematical and physical concepts of saturated flow in the subsurface |c John F. Hermance |
264 | 1 | |a Upper Saddle River, NJ |b Prentice Hall |c 1999 | |
300 | |a X, 230 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Groundwater flow |x Mathematical models | |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Grundwasserstrom |0 (DE-588)4121396-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Grundwasserstrom |0 (DE-588)4121396-8 |D s |
689 | 0 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008685473&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-008685473 |
Datensatz im Suchindex
_version_ | 1804127440948166656 |
---|---|
adam_text | A MATHEMATICAL PRIMER OIL GROUNDWATER FLOW AN INTRODUCTION TO THE
MATHEMATICAL AND PHYSICAL CONCEPTS OF SATURATED FLOW IN THE SUBSURFACE
SUB G&TTLNGEN 208 736867 98B1103 JOHN F. HERMANCE ENVIRONMENTAL
GEOPHYSICS/HYDROLOGY DEPARTMENT OF GEOLOGICAL SCIENCES BROWN UNIVERSITY
PRENTICE HALL UPPER SADDLE RIVER, NEW JERSEY 07458 TABLE OF CONTENTS
PREFACE IX PART I. FUNDAMENTAL RELATIONS OF GROUNDWATER FLOW 1 /.
HYDROLOGIC NATURE OF THE SUBSURFACE 1 BACKGROUND 1 A FUNDAMENTAL
CONSERVATION CONDITION 1 LOCAL HYDROLOGIC CYCLE 2 THE SUBSURFACE
ENVIRONMENT 4 PHYSICAL FOUNDATIONS OF GROUNDWATER FLOW 4 DARCY S LAW FOR
PRESSURE; DARCY S LAW IN TERMS OF HYDRAULIC HEAD; PRESSURE HEAD AND HEAD
LOSS; DARCY S LAW IN H; SPECIFIC DISCHARGE ASIDE: ANALOGY WITH
ELECTROMAGNETIC THEORY 9 HYDRAULIC CONDUCTIVITY IN TERMS OF THE
INTRINSIC PHYSICAL PROPERTIES OF THE MEDIUM AND THE FLUID 9 CASE OF AN
IDEAL MATERIAL; CASE OF REAL, NON-IDEAL MATERIALS SATURATED AND
UNSATURATED CONDITIONS IN THE SUBSURFACE 11 FUNDAMENTAL VOLUMETRIC
PARAMETERS 11 POROSITY, VOID RATIO & MOISTURE CONTENT 11 POROSITY FOR
MATERIALS HAVING UNIFORM SIZED GRAINS; CASE OF IDEAL NON-UNIFORM SIZED
GRAINS; VOID RATIO; SATURATION; MOISTURE CONTENT YIELD AND RETENTION OF
GROUNDWATER 12 SPECIFIC YIELD; SPECIFIC RETENTION THE SATURATED ZONE 13
WATER TABLE; AQUIFER, AQUICLUDE, AQUIFUGE, AND AQUITARD; UNCONFINED
VERSUS CONFINED AQUIFERS 2. DARCY S LAW AND THREE DIMENSIONAL FLOW 15
DETAILED CONSIDERATIONS OF DARCY S LAW 15 DARCY S LAW IN TERMS OF
PRESSURE HEAD 15 HUBBERT S CONUNDRUM 15 PRESSURE, ELEVATION HEAD,
HYDRAULIC HEAD, PRESSURE HEAD, TOTAL MECHANICAL ENERGY, AND FLUID
POTENTIAL 17 PRESSURE; ELEVATION HEAD; HYDRAULIC HEAD; PRESSURE HEAD;
TOTAL MECHANICAL ENERGY; FLUID POTENTIAL FLUID POTENTIAL IN TERMS OF
HYDRAULIC HEAD 18 DARCY S LAW IN TERMS OF FLUID POTENTIAL 19 FLOW IN
DISTRIBUTED MEDIA 20 DARCY S LAW IN DIFFERENTIAL FORM 20 INHOMOGENEOUS
VERSUS ANISOTROPIC MEDIA 21 TYPES OF MEDIA 21 HOMOGENEOUS VS
INHOMOGENEOUS; ISOTROPIC VS ANISOTROPIC ANISOTROPY 21 THE HYDRAULIC
CONDUCTIVITY TENSOR 22 DIMENSIONALITY OF PRACTICAL HYDROGEOLOGICAL
SITUATIONS: SIMPLIFYING A COMPLEX WORLD TO LOWER DIMENSIONS 23 A THREE
DIMENSIONAL VIEW 23 A TWO DIMENSIONAL MODEL 24 A ONE DIMENSIONAL MODEL
25 -M- 3. TAYLOR S SERIES, DIRECTIONAL DERIVATIVES AND HYDRAULIC
GRADIENTS 26 TAYLOR S SERIES FOR HYDRAULIC HEAD 26 VARIABLE FLOW IN ONE
DIMENSION 26 EXTRAPOLATING THE VALUE OF A FUNCTION FROM ONE POINT TO
ANOTHER 26 PROBLEMS WITH EXTRAPOLATING OVER LARGE DISTANCE 28 TAYLOR S
SERIES EXPANSION OF A FUNCTION H(X) 29 TAYLOR S SERIES IN THREE
DIMENSIONS 29 DIRECTIONAL DERIVATIVES, DIRECTION COSINES, PRINCIPAL
DIRECTIONS & GRADIENTS 32 DIRECTIONAL DERIVATIVES OF HYDRAULIC HEAD 32
DIRECTION COSINES 32 PRINCIPAL DIRECTIONS, HYDRAULIC GRADIENTS &
FLOW-LINES 33 HYDRAULIC GRADIENT; FLUID FLOW; FLOW-LINES 4. CONSERVATION
OF FLUID FLOW: APPLICATION TO ONE DIMENSION 36 A CONTINUITY CONDITION ON
DARCY FLOW 36 ASIDE: RELATION TO OTHER FIELDS OF SCIENCE 36 APPLYING THE
CONSERVATION RELATION TO ONE DIMENSION 37 NET FLUX: INTEGRATING THE
LEFT-HAND SIDE OF THE CONSERVATION RELATION 39 SOURCE TERMS: INTEGRATING
THE RIGHT HAND SIDE OF THE CONSERVATION RELATION 40 BALANCING THE
CONTINUITY EQUATION 42 ONE DIMENSIONAL FLOW 42 SOURCE-FREE CONDITIONS 43
APPLICATION TO 1-D FLOW IN A CONFINED AQUIFER 44 LAPLACE S EQUATION
APPLIED TO 1-D FLOW 44 SOME PRELIMINARY CONSIDERATIONS 44 SOLVING
LAPLACE S EQUATION AS A BOUNDARY VALUE PROBLEM IN 1-D 45 5. FUNDAMENTAL
RELATIONS FOR GROUNDWATER FLOW IN THREE DIMENSIONS 47 SYNOPSIS OF BASIC
FORMS 47 FLOW IN THREE DIMENSIONAL DISTRIBUTED MEDIA 47 DARCY S LAW IN
VECTOR FORM 48 DIVERGENCE OF FLUX 49 CONTINUITY OF DARCY FLOW 49 FLUX
TERM: EVALUATING THE LEFT HAND SIDE OF THE CONSERVATION INTEGRAL 50
NORMAL FLUX THROUGH A SURFACE ELEMENT, INTEGRATION OF NORMAL FLUX
THROUGH ALL SURFACE FACETS SOURCE TERM: EVALUATING THE RIGHT HAND SIDE
OF THE CONSERVATION INTEGRAL 53 THE DIVERGENCE CONDITION 53 CIRCULATION
AND CURL OF A FLOW FIELD 54 CIRCULATION INTEGRAL 54 APPLICATION TO AN
INFINITESIMAL CONTOUR; CURL OF THE FLOW FIELD; A SIMPLE EXAMPLE;
APPLICATION TO GROUNDWATER FLOW; THE CURL IN THREE DIMENSIONS, SPECIFIC
DISCHARGE AS A CURL-FREE VECTOR FIELD THE FUNDAMENTAL EQUATION OF
GROUNDWATER FLOW 57 GENERIC SOURCE TERMS IN THE FLOW EQUATION 58 -IV-
PART II. STEADY-STATE FLOW 59 6. TWO DIMENSIONAL STEADY-STATE FLOW 59
FLOW FUNCTIONS AND FLOW NETS 59 ANALYTICAL BASIS OF FLOW NETS 60 NOTE ON
TERMINOLOGY; NOTE ON UNITS DETERMINING FLOW FUNCTIONS ANALYTICALLY 67
FLOW-LINES 67 FLUX-TUBES 68 H-LINES 69 CONSTRUCTION OF FLOW-NETS 70
QUANTITATIVE INTERPRETATION OF FLOW-NETS 71 ANALYTICAL EXAMPLE OF A
FLOW-NET 71 A FORM FOR V(X,Y); DETERMINING QFROM V(X,Y); CURL-FREE
CONDITIONS; DIVERGENCE-FREE CONDITIONS; DETERMINING H(X,Y) FROM V(X,Y)
VERIFYING THE FORM OF H (X,Y) 75 ASSOCIATED FLOW-NET 76 CONSTRUCTING
FLOW-NETS BY HAND 77 7. REFRACTION OF FLUX 78 CONDITIONS ON FLOW ACROSS
A DISCONTINUITY IN MATERIAL PROPERTIES 78 CONTINUITY OF FLUX NORMAL TO A
BOUNDARY 78 CONTINUITY OF H 80 SUMMARY OF CONDITIONS ON Q AND H AT A
DISCONTINUITY 83 REFRACTION OF FLOW ACROSS A DISCONTINUITY 84 A
NUMERICAL EXAMPLE 87 8. STEADY STATE FLOW IN UNCONFINED AQUIFERS 89
FUNDAMENTAL ASPECTS OF UNCONFINED FLOW 89 DUPUIT FLOW IN UNCONFINED
AQUIFERS 92 DUPUIT ASSUMPTIONS 92 AVERAGE FLOW PROPERTIES OF THE AQUIFER
93 THEORETICAL AND PRACTICAL BASIS FOR DUPUIT FLOW 94 HORIZONTAL
UNCONFINED FLOW: DIVERGENCE OF FLUX FOR THE 1-D CASE 95 HORIZONTAL
UNCONFINED FLOW: THE 2-D CASE 98 DISCHARGE POTENTIAL FOR UNCONFINED FLOW
99 APPLICATION TO 1-D STEADY-STATE FLOW IN AN UNCONFINED AQUIFER 100
FLOW IN THE ABSENCE OF LOCAL SOURCES (SOURCE-FREE CONDITIONS) 100
STATEMENT OF THE PROBLEM; SOLUTION IN TERMS OF THE DISCHARGE POTENTIAL;
CONVERTING TO HYDRAULIC HEAD; THE CORRESPONDING TOTAL DISCHARGE; THE
CORRESPONDING SPECIFIC DISCHARGE FLOW WITH LOCAL SOURCES 104 BASIC
RELATIONS; APPLYING BOUNDARY CONDITIONS DIRECT INTEGRATION OF REGIONAL
HYDRAULIC GRADIENTS WITH LOCAL SOURCES 107 FLOW RELATION; EXAMPLE 9.
NATURAL STEADY STATE RECHARGE AND DISCHARGE SYSTEMS IN THE VERTICAL
PLANE 109 GENERAL STATEMENT OF THE PROBLEM 109 TWO-DIMENSIONAL FLOW IN
THE VERTICAL PLANE 109 A SPECIFIC SOLUTION 111 A SIMPLE HARMONIC MODEL
FOR THE POTENTIOMETRIC SURFACE 111 ASSUMED AND IMPLIED BOUNDARY
CONDITIONS 112 SOLVING LAPLACE S EQUATION BY SEPARATION OF VARIABLES 114
APPLICATION TO A THEORETICAL EXAMPLE 117 - V - 10. STEADY STATE FLOW TO
A WELL 119 TRANSITION FROM TRANSIENT TO STEADY-STATE FLOW AT A
DISCHARGING WELL 119 DRAWDOWN OF H AND THE CONE OF DEPRESSION 119
TRANSIENT CONDITIONS UNDER CONSTANT DISCHARGE 120 COMPARING TRANSIENT
DRAWDOWN IN TWO MONITORING WELLS 121 DEFINING EQUILIBRIUM 122
STEADY-STATE FLOW TO A WELL DISCHARGING FROM A CONFINED AQUIFER 123 THE
AQUIFER 123 HORIZONTAL FLOW AND THE DISCHARGE POTENTIAL 123 RADIAL FLOW
TO A DISCHARGING WELL 124 CONSERVATION OF RADIAL FLUX 125 TAYLOR S
SERIES FOR Q F 127 DIVERGENCE OF RADIAL FLOW; POISSON S AND LAPLACE S
EQUATIONS FOR RADIAL FLOW S OLUTION OF LAPLACE S EQUATION 129 BOUNDARY
CONDITIONS 129 DRAWDOWN OFH; DRAWDOWN AT THE DISCHARGING WELL;
STEADY-STATE FLOW IN THE AQUIFER THE THIEM RELATION 131 STEADY-STATE
FLOW TO A WELL DISCHARGING FROM AN UNCONFINED AQUIFER 133 STATEMENT OF
THE PROBLEM 133 MATHEMATICAL BACKGROUND 133 DISCHARGE POTENTIAL FOR
UNCONFINED FLOW 135 FUNDAMENTAL EQUATIONS FOR STEADY-STATE UNCONFINED
RADIAL FLOW 136 SOLUTION OF LAPLACE S EQUATION 136 BOUNDARY CONDITIONS
136 DRAWDOWN OFH; DRAWDOWN AT THE DISCHARGING WELL; DEFINING AN
AVERAGE TRANSMISSIVITY; A FORM OF DARCY S LAW; STEADY-STATE FLOW IN
THE AQUIFER THE THIEM RELATION FOR UNCONFINED FLOW 140 STEADY-STATE FLOW
RELATIONS; NOTE ON A COMMON UNCONFINED FLOW APPROXIMATION PART III.
TRANSIENT FLOW 143 11. INTRODUCTION TO TRANSIENT FLOW 143 FUNDAMENTAL
RELATIONS 143 CAUSES OF TRANSIENT FLOW 143 CONSERVATION OF FLUID FLUX:
CONTINUITY CONDITION WITH SOURCES 143 TRANSIENT EFFECTS FROM THE AQUIFER
143 TRANSIENT RESPONSE TO A DISCHARGE EVENT 144 ELASTIC BEHAVIOR OF THE
SUBSURFACE 145 COMPRESSIBILITY 145 COMPRESSIBILITY OF WATER;
COMPRESSIBILITY OF THE HOST MATRIX; COMPACTION COMPRESSIBILITY OF A
FLUID SATURATED POROUS MEDIUM 146 EXPERIMENTALLY DETERMINING A 146
EFFECTIVE STRESS 148 EFFECTIVE STRESS IN TERMS OF HYDRAULIC HEAD 149
CONFINED AQUIFER: MECHANISMS OF WATER RELEASE 150 IMPORTANCE OF THE
ELASTIC PROPERTIES OF AN AQUIFER 150 RELEASE OF WATER FROM STORAGE BY
COMPACTION 150 RELEASE OF FLUID VOLUME THROUGH DECOMPRESSION 151 TOTAL
WATER RELEASED AS SPECIFIC STORAGE 152 CONFINED AQUIFERS: THE TRANSIENT
FLOW EQUATION 154 DIFFUSION EQUATION FOR HYDRAULIC HEAD, SPECIFIC
STORAGE AND HYDRAULIC CONDUCTIVITY 154 - VI - HORIZONTAL FLOW EQUATION
IN TERMS OF THE STORATIVITY AND TRANSMISSIVITY OF A CONFINED AQUIFER 155
UNCONFINED AQUIFERS: MECHANISMS OF WATER RELEASE 155 GENERAL FLOW
RELATION 155 SPECIFIC STORAGE 156 SPECIFIC YIELD 156 GRAVITY DRAINAGE;
HORIZONTAL FLOW IN UNCONFINED AQUIFERS COMPARING STORAGE CHARACTERISTICS
OF CONFINED AND UNCONFINED AQUIFERS 158 UNCONFINED AQUIFERS: THE
TRANSIENT FLOW EQUATION 158 CONSERVATION CONDITION FOR TRANSIENT
HORIZONTAL UNCONFINED FLOW 158 TRANSIENT HORIZONTAL FLOW RELATION FOR
UNCONFINED AQUIFERS 159 A SIMPLE LINEARIZATION OF THE HORIZONTAL
UNCONFINED FLOW RELATION 160 12. TRANSIENT 1-D FLOW IN A CONFINED LAYER:
PERIODIC AND APERIODIC SOLUTIONS 162 CONCEPT OF ELEMENTARY SOLUTIONS OF
THE TRANSIENT FLOW EQUATION 162 PERIODIC TRANSIENT FLOW IN A CONFINED
AQUIFER 163 METHOD OF SEPARATION OF VARIABLES 163 HARMONIC TIME
DEPENDENCE: FOURIER INTEGRAL TRANSFORMS 164 CHARACTERISTIC ATTENUATION
LENGTH 166 PHASE VELOCITY 166 CHARACTERISTIC DELAY TIME 168 APERIODIC
TRANSIENT FLOW IN A CONFINED AQUIFER 168 GENERAL SOLUTION 168 IMPULSE
RESPONSE OF AN AQUIFER 171 PROPERTIES OF AN IMPULSE; THE DIRDC DELTA
FUNCTION; IMPULSES AS DELTA FUNCTIONS; RESPONSE OF THE HYDRAULIC HEAD TO
A UNIT IMPULSE FORCING TERM EXAMPLE OF AN IMPULSE RESPONSE IN SPACE AND
TIME 175 INVARIANT IMPULSE RESPONSE 175 13. TRANSIENT 1-D FLOW:
SUPERPOSITION OF ELEMENTARY RESPONSE FUNCTIONS 178 COMPOSITES OF
PERIODIC TRANSIENTS 178 REVIEW OF HARMONIC SOLUTIONS 178 EXAMPLE: A
FINITE LENGTH CONFINED AQUIFER 178 COMPOSITES OF APERIODIC TRANSIENTS
179 SUPERPOSITION OF APERIODIC TRANSIENTS: AN INTUITIVE VIEWPOINT 179
SUPERPOSITION OF APERIODIC TRANSIENTS: A MATHEMATICAL VIEWPOINT 181
MATHEMATICAL PRELIMINARIES; GREEN S FUNCTIONS; SUPERPOSITION AS AN
INTEGRAL OPERATION; THE CONVOLUTION INTEGRAL SUPERPOSITION OF ELEMENTARY
FUNCTIONS TO EMULATE BOUNDARY CONDITIONS 185 APERIODIC TRANSIENTS:
SUPERPOSITION OF COMPOSITE SOURCES 188 DECAY FROM A GLOBAL INITIAL
CONDITION 188 APPLICATION TO A UNIFORM OFFSET IN THE HYDRAULIC HEAD 188
SOLUTION IN TERMS OF THE ERROR FUNCTION 189 DIGRESSION ON THE PROPERTIES
OF THE ERROR FUNCTION 190 SERIES FORM; ASYMPTOTIC FORMS APPLICATION TO A
STEP OFFSET IN THE HYDRAULIC HEAD AT X = 0 191 THE ERROR FUNCTION AS A
GENERAL SOLUTION; STATEMENT OF THE STEP OFF SET PROBLEM COMPLEMENTARY
ERROR FUNCTION 193 RELATION TO ERROR FUNCTION ASYMPTOTIC BEHAVIOR OF H
195 ALTERNATIVE REPRESENTATIONS 195 - VN - HYDRAULIC DIFFUSIVITY 197
COMPARING PERIODIC AND APERIODIC TRANSIENT FLOW EVENTS 197 SCALING
PARAMETERS IN PERIODIC AND APERIODIC FLOW 197 EXAMPLE: APERIODIC
TRANSIENT FLOW 198 14. TRANSIENT WELL DISCHARGE FROM A CONFINED AQUIFER
200 TWO DIMENSIONAL FLOW TO A WELL 200 RECALLING POISSON S EQUATION FOR
RADIAL FLOW 200 DIFFUSION EQUATION FOR RADIAL FLOW 200 RADIAL FLOW CLOSE
TO A DISCHARGING WELL 201 SOLUTION TO THE RADIAL FLOW EQUATION 201
SEPARATION OF VARIABLES 201 INITIAL AND BOUNDARY CONDITIONS 203
CONDITIONS AT THE ORIGIN AND EARLY TIME 204 IMPULSE SOURCE FUNCTION 204
DETERMINING THE HANKEL TRANSFORM 206 IMPULSE RESPONSE IN INTEGRAL FORM
207 AN INTEGRAL IDENTITY 207 IMPULSE RESPONSE FROM TRANSIENT DISCHARGE
208 BEHAVIOR OF IMPULSE RESPONSE IN SPACE AND TIME 208 TRANSIENT
RESPONSE TO CONTINUOUS DISCHARGE 209 SOLUTION FOR CONSTANT DISCHARGE 0
X T 209 THE EXPONENTIAL INTEGRAL 209 DRAWDOWN IN SPACE AND TIME 210
ASYMPTOTIC FORM FOR LARGE TIMES OR SMALL DISTANCES 211 RESULTS IN TERMS
OF THE PERTURBATION OF THE HYDRAULIC HEAD 212 RESULTS IN TERMS OF
DRAWDOWN 212 CASE A: DRAWDOWN AS A FUNCTION OF TIME AFFIXED RADIUS; CASE
B: DRAWDOWN AS A FUNCTION OF RADIUS AT FIXED TIME JACOB S STRAIGHT LINE
METHOD 213 STRAIGHT LINE CURVE FITS COMPLETE CURVE MATCHING 214 15.
SELECTED TOPICS IN TRANSIENT FLOW 215 REVIEW OF TRANSIENT FLOW RELATIONS
IN THREE DIMENSIONS 215 FUNDAMENTAL RELATIONS 215 DIFFUSION EQUATION FOR
HYDRAULIC HEAD 215 TWO DIMENSIONAL TRANSIENT DISCHARGE POTENTIALS FOR
CONFINED & UNCONFINED FLOW 215 DARCY S LAW IN THE DISCHARGE POTENTIAL
215 CONSERVATION CONDITION ON THE DISCHARGE POTENTIAL 216 FLUID
PRODUCTION ASSOCIATED WITH TRANSIENT CHANGES IN H 217 CONFINED AQUIFER:
STORAGE PROPERTIES; UNCONFINED AQUIFER: STORAGE PROPERTIES TRANSIENT
FLOW RELATIONS FOR THE DISCHARGE POTENTIALS 218 CONFINED FLOW 218
DIFFUSION EQUATION FOR C ; DIFFUSION EQUATION FOR O C IN CYLINDRICAL
COORDINATES UNCONFINED FLOW 218 LINEARIZING THE DIFFUSION EQUATION FOR
UNCONFINED FLOW; DIFFUSION EQUATION FOR & U IN CYLINDRICAL COORDINATES;
RESPONSE TO DISCHARGE FROM A WELL PUMPING AN UNCONFINED AQUIFER EXAMPLE
OF A WELL TEST ON AN UNCONFINED OR WATER TABLE AQUIFER 221 STAGES OF
DRAWDOWN; APPLICATION TO ACTUAL DATA REFERENCES AND RECOMMENDED READING
224 INDEX 226 - VNI -
|
any_adam_object | 1 |
author | Hermance, John F. |
author_facet | Hermance, John F. |
author_role | aut |
author_sort | Hermance, John F. |
author_variant | j f h jf jfh |
building | Verbundindex |
bvnumber | BV012772548 |
callnumber-first | G - Geography, Anthropology, Recreation |
callnumber-label | GB1197 |
callnumber-raw | GB1197.7 |
callnumber-search | GB1197.7 |
callnumber-sort | GB 41197.7 |
callnumber-subject | GB - Physical Geography |
classification_rvk | TI 8235 RB 10354 |
ctrlnum | (OCoLC)39464771 (DE-599)BVBBV012772548 |
dewey-full | 551.49/01/5118 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 551 - Geology, hydrology, meteorology |
dewey-raw | 551.49/01/5118 |
dewey-search | 551.49/01/5118 |
dewey-sort | 3551.49 11 45118 |
dewey-tens | 550 - Earth sciences |
discipline | Geologie / Paläontologie Geographie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01613nam a2200397 c 4500</leader><controlfield tag="001">BV012772548</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231023 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">990921s1999 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0138964998</subfield><subfield code="9">0-13-896499-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)39464771</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012772548</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GB1197.7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">551.49/01/5118</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TI 8235</subfield><subfield code="0">(DE-625)162574:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10354</subfield><subfield code="0">(DE-625)142220:12705</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hermance, John F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A mathematical primer on groundwater flow</subfield><subfield code="b">an introduction to the mathematical and physical concepts of saturated flow in the subsurface</subfield><subfield code="c">John F. Hermance</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Upper Saddle River, NJ</subfield><subfield code="b">Prentice Hall</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 230 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groundwater flow</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grundwasserstrom</subfield><subfield code="0">(DE-588)4121396-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Grundwasserstrom</subfield><subfield code="0">(DE-588)4121396-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008685473&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008685473</subfield></datafield></record></collection> |
id | DE-604.BV012772548 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:33:23Z |
institution | BVB |
isbn | 0138964998 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008685473 |
oclc_num | 39464771 |
open_access_boolean | |
owner | DE-703 DE-19 DE-BY-UBM DE-634 |
owner_facet | DE-703 DE-19 DE-BY-UBM DE-634 |
physical | X, 230 S. graph. Darst. |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Prentice Hall |
record_format | marc |
spelling | Hermance, John F. Verfasser aut A mathematical primer on groundwater flow an introduction to the mathematical and physical concepts of saturated flow in the subsurface John F. Hermance Upper Saddle River, NJ Prentice Hall 1999 X, 230 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Mathematisches Modell Groundwater flow Mathematical models Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Grundwasserstrom (DE-588)4121396-8 gnd rswk-swf Grundwasserstrom (DE-588)4121396-8 s Mathematisches Modell (DE-588)4114528-8 s DE-604 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008685473&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Hermance, John F. A mathematical primer on groundwater flow an introduction to the mathematical and physical concepts of saturated flow in the subsurface Mathematisches Modell Groundwater flow Mathematical models Mathematisches Modell (DE-588)4114528-8 gnd Grundwasserstrom (DE-588)4121396-8 gnd |
subject_GND | (DE-588)4114528-8 (DE-588)4121396-8 |
title | A mathematical primer on groundwater flow an introduction to the mathematical and physical concepts of saturated flow in the subsurface |
title_auth | A mathematical primer on groundwater flow an introduction to the mathematical and physical concepts of saturated flow in the subsurface |
title_exact_search | A mathematical primer on groundwater flow an introduction to the mathematical and physical concepts of saturated flow in the subsurface |
title_full | A mathematical primer on groundwater flow an introduction to the mathematical and physical concepts of saturated flow in the subsurface John F. Hermance |
title_fullStr | A mathematical primer on groundwater flow an introduction to the mathematical and physical concepts of saturated flow in the subsurface John F. Hermance |
title_full_unstemmed | A mathematical primer on groundwater flow an introduction to the mathematical and physical concepts of saturated flow in the subsurface John F. Hermance |
title_short | A mathematical primer on groundwater flow |
title_sort | a mathematical primer on groundwater flow an introduction to the mathematical and physical concepts of saturated flow in the subsurface |
title_sub | an introduction to the mathematical and physical concepts of saturated flow in the subsurface |
topic | Mathematisches Modell Groundwater flow Mathematical models Mathematisches Modell (DE-588)4114528-8 gnd Grundwasserstrom (DE-588)4121396-8 gnd |
topic_facet | Mathematisches Modell Groundwater flow Mathematical models Grundwasserstrom |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008685473&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT hermancejohnf amathematicalprimerongroundwaterflowanintroductiontothemathematicalandphysicalconceptsofsaturatedflowinthesubsurface |