Diffusion models of environmental transport:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton [u.a.]
Lewis
2000
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 183 S. graph. Darst. |
ISBN: | 1566704146 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV012661550 | ||
003 | DE-604 | ||
005 | 20010906 | ||
007 | t | ||
008 | 990714s2000 d||| |||| 00||| eng d | ||
020 | |a 1566704146 |9 1-56670-414-6 | ||
035 | |a (OCoLC)42040920 | ||
035 | |a (DE-599)BVBBV012661550 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
050 | 0 | |a TD193 | |
082 | 0 | |a 628.5 |2 21 | |
084 | |a WK 6100 |0 (DE-625)149276: |2 rvk | ||
100 | 1 | |a Choy, Bruce |e Verfasser |4 aut | |
245 | 1 | 0 | |a Diffusion models of environmental transport |c Bruce Choy ; Danny D. Reible |
264 | 1 | |a Boca Raton [u.a.] |b Lewis |c 2000 | |
300 | |a 183 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Chimie de l'environnement - Modèles mathématiques | |
650 | 4 | |a Diffusion (Physique) - Modèles mathématiques | |
650 | 4 | |a Transport, Théorie du - Modèles mathématiques | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Diffusion |x Mathematical models | |
650 | 4 | |a Environmental chemistry |x Mathematical models | |
650 | 4 | |a Transport theory |x Mathematical models | |
650 | 0 | 7 | |a Diffusion |0 (DE-588)4012277-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Transporttheorie |0 (DE-588)4185936-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ökologische Chemie |0 (DE-588)4135167-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ökologische Chemie |0 (DE-588)4135167-8 |D s |
689 | 0 | 1 | |a Transporttheorie |0 (DE-588)4185936-4 |D s |
689 | 0 | 2 | |a Diffusion |0 (DE-588)4012277-3 |D s |
689 | 0 | 3 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Reible, Danny D. |e Sonstige |4 oth | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008603281&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-008603281 |
Datensatz im Suchindex
_version_ | 1804127319896358912 |
---|---|
adam_text | Table of Contents
1 ENVIRONMENTAL TRANSPORT MODELING............................................................................1
1.1 Introduction.........................................................................................................................................1
2 PRELIMINARIES.................................................................................................................................5
2.1 Equilibrium between environmental phases...................................................................................5
2.1.1 Chemical equilibrium in air-water phases...........................................................................................5
2.1.2 Chemical equilibrium in water-organic liquid phases.........................................................................6
2.1.3 Chemical equilibrium in the air-water-soil phases..............................................................................7
2.2 DlFEUSION AND THE DIFFUSION COEFFICIENT...........................................................................................9
2.2.1 Diffusion in free phases.......................................................................................................................9
2.2.2 Effective diffusion coefficient in a porous medium.......................................................................... 10
2.3 ADVECTION AND THE SURFACE MASS TRANSFER COEFFICIENT............................................................... 11
2.3.1 Laminar flow boundary layer theory and turbulent flow mass transfer............................................. 11
2.3.2 Penetration theory............................................................................................................................. 12
2.4 Mass balance and transport equations........................................................................................12
References.................................................................................................................................................15
3 DIFFUSION IN A SEMI-INFINITE SYSTEM................................................................................17
3.1 Introduction.......................................................................................................................................17
3.2 Analysis summary..............................................................................................................................17
3.2.1 Case 1: Semi-infinite region with uniform initial concentration and zero concentration at the
surface...............................................................................................................................................17
3.2.2 Case 2: Semi-infinite region with uniform initial concentration and mass transfer or reaction at
the surface......................................................................................................................................... 18
3.2.3 Case 3: Semi-infinite region with uniform initial concentration capped by a finite layer with a
different uniform initial concentration, and zero concentration at the surface..................................20
3.2.4 Case 4: Semi-infinite region with uniform initial concentration, zero concentration at the
surface, and first-order decay............................................................................................................21
3.2.5 Case 5: Semi-infinite region with uniform initial concentration, mass transfer or reaction at the
surface, and first-order decay............................................................................................................22
3.2.6 Case 6: Semi-infinite region with uniform initial concentration capped by a finite layer with a
different uniform initial concentration, zero concentration at the surface, and first-order decay......23
3.3 Numerical Evaluation......................................................................................................................25
3.4 Development.......................................................................................................................................25
3.4.1 Laplace transformation method.........................................................................................................25
3.4.2 Principle of superposition..................................................................................................................29
3.4.3 Variable transformation for first-order decay....................................................................................30
References.................................................................................................................................................32
4 DIFFUSION IN A FINITE LAYER...................................................................................................33
4.1 Introduction.......................................................................................................................................33
4.2 Analysis summary..............................................................................................................................33
4.2.1 Case I: Finite layer with arbitrary initial concentrations, zero concentration at the surface, and
zero flux at the base...........................................................................................................................34
4.2.2 Case 2: Finite layer with uniform initial concentration, zero surface concentration, and zero flux
at the base..........................................................................................................................................35
4.2.3 Case 3: Finite layer with arbitrary initial concentrations, mass transfer or reaction at the surface,
and zero flux at the base....................................................................................................................36
4.2.4 Case 4: Finite layer with uniform initial concentration, mass transfer or reaction at the surface.
and zero flux at the base....................................................................................................................37
4.2.5 Case 5: Finite layer with arbitrary initial concentrations, zero concentration at the surface, zero
flux at the base, and first-order decay...............................................................................................38
Contaminant Transport in Soils and Sediments
4.2.6 Case 6: Finite layer with uniform initial concentration, zero surface concentration, zero flux at
the base, and first-order decay...........................................................................................................39
4.2.7 Case 7: Finite layer with arbitrary initial concentrations, mass transfer or reaction at the surface,
zero flux at the base, and first-order decay........................................................................................40
4.2.8 Case 8: Finite layer with uniform initial concentration, mass transfer or reaction at the surface,
zero flux at the base, and first-order decay........................................................................................41
4.3 Numerical evaluation......................................................................................................................42
4.3.1 Evaluation of the initial condition integral........................................................................................42
4.3.2 Cases 1 and 2: zero surface concentration.........................................................................................44
4.3.3 Cases 3 and 4: surface mass transfer.................................................................................................44
4.3.4 Determining transcendental function roots........................................................................................45
4.4 Development.......................................................................................................................................46
4.4.1 Separation of variables......................................................................................................................46
4.4.2 Solution to the temporal problem......................................................................................................46
4.4.3 Solution to the spatial problem..........................................................................................................46
4.4.4 Variable transformation for first-order decay....................................................................................51
References.................................................................................................................................................52
5 DIFFUSION IN A TWO-LAYER COMPOSITE SYSTEM............................................................53
5.1 Introduction.......................................................................................................................................53
5.2 Analysis summary..............................................................................................................................53
5.2.1 System dynamics and general solution for a two-layer composite....................................................53
5.2.2 System eigenfunctions and eigenvalues............................................................................................55
5.2.3 Case I: Two-layer finite system with arbitrary initial concentrations, zero concentration at the
surface, and zero flux at the base.......................................................................................................56
5.2.4 Case 2: Two-layer finite system with arbitrary initial concentrations, mass transfer or reaction at
the surface, and zero flux at the base.................................................................................................58
5.3 Numerical Evaluation......................................................................................................................60
5.3.1 Concentration calculation..................................................................................................................61
5.3.2 Surface flux calculation.....................................................................................................................62
5.3.3 Range of significance for eigenvalues...............................................................................................62
5.3.4 Determination of eigenvalues in range..............................................................................................63
5.3.5 Eigenfunction evaluation...................................................................................................................65
5.3.6 Normalization integral evaluation.....................................................................................................65
5.3.7 Initialization integral evaluation........................................................................................................65
5.4 Development.......................................................................................................................................67
5.4.1 Separation of variables......................................................................................................................67
5.4.2 Solution to the temporal problem......................................................................................................67
5.4.3 Solution to the spatial problem..........................................................................................................67
5.4.4 Initial conditions................................................................................................................................72
5.4.5 Variable transformation for first-order decay....................................................................................74
Ri! LRENCFS ................................................................................................................................................. 75
6 DIFFUSION IN A THREE-LAYER COMPOSITE SYSTEM........................................................77
6.1 Introduction.......................................................................................................................................77
6.2 Analysis summary..............................................................................................................................77
6.2.1 System dynamics and general solution for a three-layer composite..................................................77
6.2.2 System eigenfunctions and eigenvalues............................................................................................79
6.2.3 Case I: Three-layer finite system with arbitrary initial concentrations, zero concentration at the
surface, and zero flux at the base.......................................................................................................81
6.2.4 Case 2: Three-layer finite system with arbitrary initial concentrations, mass transfer or reaction
at the surface, and zero flux at the base.............................................................................................84
6.3 Numerical Evaluation......................................................................................................................87
6.3.1 Concentration calculation..................................................................................................................87
6.3.2 Surface flux calculation.....................................................................................................................88
6.3.3 Range of significance for eigenvalues...............................................................................................89
6.3.4 Determination of eigenvalues in range..............................................................................................90
6.3.5 Eigenfunction evaluation...................................................................................................................92
6.3.6 Normalization integral evaluation.....................................................................................................92
6.3.7 Initialization integral evaluation........................................................................................................92
6.3.8 General numerical evaluation comments..........................................................................................93
6.4 DEVELOPMENT.......................................................................................................................................93
6.4.1 Separation of variables......................................................................................................................93
6.4.2 Solution to the temporal problem......................................................................................................94
6.4.3 Solution to the spatial problem..........................................................................................................94
6.4.4 Initial conditions.............................................................................................................................. 104
6.4.5 Variable transformation for first-order decay.................................................................................. 106
References...............................................................................................................................................107
7 ADVECTION-DIFFUSION MODELS............................................................................................109
7.1 Introduction.....................................................................................................................................109
7.2 Analysis summary............................................................................................................................109
7.2.1 Case 1: Semi-infinite region with uniform initial concentration with a constant concentration
boundary condition.......................................................................................................................... 109
7.2.2 Case 2: Semi-infinite region with uniform initial concentration with a constant flux boundary
condition.......................................................................................................................................... 1 10
7.2.3 Case 3: Semi-infinite region with uniform initial concentration with a boundary condition given
by a finite-timed pulse at a constant concentration......................................................................... 110
7.2.4 Case 4: Semi-infinite region with uniform initial concentration with a boundary condition given
by a finite-timed pulse at a constant flux......................................................................................... I 11
7.2.5 Case 5: Semi-infinite region with uniform initial concentration capped by a finite region of a
different uniform initial condition, with a constant concentration boundary condition.................. 1 1 1
7.2.6 Case 6: Semi-infinite region with uniform initial concentration capped by a finite region of a
different uniform initial condition, with a constant flux boundary condition.................................. 1 12
7.2.7 Case 7: Semi-infinite region with uniform initial concentration capped by a finite region of a
different uniform initial condition, with a boundary condition given by a finite-timed pulse at a
constant concentration..................................................................................................................... 1 13
7.2.8 Case 8: Semi-infinite region with uniform initial concentration capped by a finite region of a
different uniform initial condition, with a boundary condition given b a finite-timed pulse at a
constant flux.................................................................................................................................... 113
7.3 Numerical Evaluation....................................................................................................................114
7.4 Development.....................................................................................................................................114
References...............................................................................................................................................117
8 VOLATILE LIQUID EVAPORATION.......................................................................................... 119
8.1 Introduction.....................................................................................................................................119
8.2 Analysis Summary...........................................................................................................................119
8.2.1 Case 1: Evaporation and vapor diffusion through soil sediment with uniform initial liquid
saturation, with zero vapor concentration at the surface................................................................. I 19
8.2.2 Case 2: Evaporation and vapor diffusion through soil sediment with uniform initial liquid
saturation, with a vapor mass transfer boundary condition at the surface....................................... 120
8.2.3 Case 3: Evaporation and vapor diffusion through soil sediment with uniform initial liquid
saturation below a finite clean capped region, with zero vapor concentration at the surface.......... 121
8.2.4 Case 4: Evaporation and vapor diffusion through soil/sediment with uniform initial liquid
saturation below a finite clean capped region, with a vapor mass transfer boundary condition at
the surface....................................................................................................................................... !--
8.3 Numerical Evaluation...................................................................................................................123
8.4 Development..................................................................................................................................... 123
8.4.1 Case 1: Evaporation and vapor diffusion through soil sediment with uniform initial liquid
saturation, with zero vapor concentration at the surface................................................................ 123
Contaminant Transport in Soils and Sediments
8.4.2 Case 2: Evaporation and vapor diffusion through soil/sediment with uniform initial liquid
saturation, with a vapor mass transfer boundary condition at the surface....................................... 124
8.4.3 Case 3: Evaporation and vapor diffusion through soil/sediment with uniform initial liquid
saturation below a finite clean capped region, with zero vapor concentration at the surface..........125
8.4.4 Case 4: Evaporation and vapor diffusion through soil/sediment with uniform initial liquid
saturation below a finite clean capped region, with a vapor mass transfer boundary condition at
the surface....................................................................................................................................... 125
REFERENCES............................................................................................................................................... 126
9 DIFFUSION WITH TIME-DEPENDENT PARTITION COEFFICIENTS................................127
9.1 Introduction.....................................................................................................................................127
9.2 Mathematical Analysis..................................................................................................................127
9.3 Analysis Summary...........................................................................................................................129
9.3.1 Case 1: Diffusion in a thin layer with time-dependent soil-air partition coefficient, zero surface
concentration, a no-flow bottom boundary condition, and constant initial conditions....................129
9.3.2 Case 2: Diffusion time-dependent partition coefficient, zero surface concentration, no flow
bottom boundary, and arbitrary initial conditions........................................................................... 133
9.3.3 Case 3: Diffusion in a thin surface boundary layer with time-dependent soil-air partition
coefficient, zero surface concentration, a constant concentration source at the lower boundary,
and constant initial conditions.........................................................................................................134
9.4 Variable transformations on a variety of time-dependent air-soil partition coefficient
functions........................................................................................................................................... 140
9.4.1 Constant soil-air partition coefficient..............................................................................................140
9.4.2 Linear soil-air partition coefficient..................................................................................................140
9.4.3 Exponential soil-air partition coefficient.........................................................................................141
9.5 Development.....................................................................................................................................142
9.5.1 Transformation of variables............................................................................................................142
9.5.2 Separation of variables.................................................................................................................... 142
9.5.3 Time-dependent boundary condition............................................................................................... 145
References...............................................................................................................................................148
10 CONSTANT FLUX LIQUID EVAPORATION.............................................................................149
10.1 Introduction..........................................................................................................................149
10.2 Analysis and Development..................................................................................................149
References...............................................................................................................................................151
APPENDIX...............................................................................................................................................153
A. Error function.................................................................................................................................153
B. Laplace transformation................................................................................................................155
C. ROOTS OF TRANSCENDENTAL EQUATIONS............................................................................................ 158
D. Predicting the diffusion coefficients vapors...........................................................................160
E. Predicting the diffusion coefficient in liquids...........................................................................162
F. SAMPLE CALCULATIONS OF MODELS USING MATHCAD™ .................................................................... 165
|
any_adam_object | 1 |
author | Choy, Bruce |
author_facet | Choy, Bruce |
author_role | aut |
author_sort | Choy, Bruce |
author_variant | b c bc |
building | Verbundindex |
bvnumber | BV012661550 |
callnumber-first | T - Technology |
callnumber-label | TD193 |
callnumber-raw | TD193 |
callnumber-search | TD193 |
callnumber-sort | TD 3193 |
callnumber-subject | TD - Environmental Technology |
classification_rvk | WK 6100 |
ctrlnum | (OCoLC)42040920 (DE-599)BVBBV012661550 |
dewey-full | 628.5 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 628 - Sanitary engineering |
dewey-raw | 628.5 |
dewey-search | 628.5 |
dewey-sort | 3628.5 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Biologie Bauingenieurwesen |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02015nam a2200505 c 4500</leader><controlfield tag="001">BV012661550</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20010906 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">990714s2000 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1566704146</subfield><subfield code="9">1-56670-414-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)42040920</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012661550</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD193</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">628.5</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WK 6100</subfield><subfield code="0">(DE-625)149276:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Choy, Bruce</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Diffusion models of environmental transport</subfield><subfield code="c">Bruce Choy ; Danny D. Reible</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">Lewis</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">183 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chimie de l'environnement - Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffusion (Physique) - Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transport, Théorie du - Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffusion</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental chemistry</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transport theory</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diffusion</subfield><subfield code="0">(DE-588)4012277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Transporttheorie</subfield><subfield code="0">(DE-588)4185936-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ökologische Chemie</subfield><subfield code="0">(DE-588)4135167-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ökologische Chemie</subfield><subfield code="0">(DE-588)4135167-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Transporttheorie</subfield><subfield code="0">(DE-588)4185936-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Diffusion</subfield><subfield code="0">(DE-588)4012277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reible, Danny D.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008603281&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008603281</subfield></datafield></record></collection> |
id | DE-604.BV012661550 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:31:28Z |
institution | BVB |
isbn | 1566704146 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008603281 |
oclc_num | 42040920 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | 183 S. graph. Darst. |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Lewis |
record_format | marc |
spelling | Choy, Bruce Verfasser aut Diffusion models of environmental transport Bruce Choy ; Danny D. Reible Boca Raton [u.a.] Lewis 2000 183 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Chimie de l'environnement - Modèles mathématiques Diffusion (Physique) - Modèles mathématiques Transport, Théorie du - Modèles mathématiques Mathematisches Modell Diffusion Mathematical models Environmental chemistry Mathematical models Transport theory Mathematical models Diffusion (DE-588)4012277-3 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Transporttheorie (DE-588)4185936-4 gnd rswk-swf Ökologische Chemie (DE-588)4135167-8 gnd rswk-swf Ökologische Chemie (DE-588)4135167-8 s Transporttheorie (DE-588)4185936-4 s Diffusion (DE-588)4012277-3 s Mathematisches Modell (DE-588)4114528-8 s DE-604 Reible, Danny D. Sonstige oth HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008603281&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Choy, Bruce Diffusion models of environmental transport Chimie de l'environnement - Modèles mathématiques Diffusion (Physique) - Modèles mathématiques Transport, Théorie du - Modèles mathématiques Mathematisches Modell Diffusion Mathematical models Environmental chemistry Mathematical models Transport theory Mathematical models Diffusion (DE-588)4012277-3 gnd Mathematisches Modell (DE-588)4114528-8 gnd Transporttheorie (DE-588)4185936-4 gnd Ökologische Chemie (DE-588)4135167-8 gnd |
subject_GND | (DE-588)4012277-3 (DE-588)4114528-8 (DE-588)4185936-4 (DE-588)4135167-8 |
title | Diffusion models of environmental transport |
title_auth | Diffusion models of environmental transport |
title_exact_search | Diffusion models of environmental transport |
title_full | Diffusion models of environmental transport Bruce Choy ; Danny D. Reible |
title_fullStr | Diffusion models of environmental transport Bruce Choy ; Danny D. Reible |
title_full_unstemmed | Diffusion models of environmental transport Bruce Choy ; Danny D. Reible |
title_short | Diffusion models of environmental transport |
title_sort | diffusion models of environmental transport |
topic | Chimie de l'environnement - Modèles mathématiques Diffusion (Physique) - Modèles mathématiques Transport, Théorie du - Modèles mathématiques Mathematisches Modell Diffusion Mathematical models Environmental chemistry Mathematical models Transport theory Mathematical models Diffusion (DE-588)4012277-3 gnd Mathematisches Modell (DE-588)4114528-8 gnd Transporttheorie (DE-588)4185936-4 gnd Ökologische Chemie (DE-588)4135167-8 gnd |
topic_facet | Chimie de l'environnement - Modèles mathématiques Diffusion (Physique) - Modèles mathématiques Transport, Théorie du - Modèles mathématiques Mathematisches Modell Diffusion Mathematical models Environmental chemistry Mathematical models Transport theory Mathematical models Diffusion Transporttheorie Ökologische Chemie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008603281&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT choybruce diffusionmodelsofenvironmentaltransport AT reibledannyd diffusionmodelsofenvironmentaltransport |