Mathematical intuitionism and intersubjectivity: a critical exposition of arguments for intuitionism
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Dordrecht [u.a.]
Kluwer
1999
|
Schriftenreihe: | Synthese library
279 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XI, 218 S. |
ISBN: | 0792356306 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV012660257 | ||
003 | DE-604 | ||
005 | 19991001 | ||
007 | t | ||
008 | 990714s1999 |||| 00||| eng d | ||
020 | |a 0792356306 |9 0-7923-5630-6 | ||
035 | |a (OCoLC)40762714 | ||
035 | |a (DE-599)BVBBV012660257 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-739 |a DE-12 |a DE-29 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA8.4 | |
082 | 0 | |a 511/.22 |2 21 | |
084 | |a CC 2600 |0 (DE-625)17610: |2 rvk | ||
100 | 1 | |a Placek, Tomasz |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mathematical intuitionism and intersubjectivity |b a critical exposition of arguments for intuitionism |c Tomasz Placek |
264 | 1 | |a Dordrecht [u.a.] |b Kluwer |c 1999 | |
300 | |a XI, 218 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Synthese library |v 279 | |
650 | 7 | |a Filosofie |2 gtt | |
650 | 7 | |a Intuïtionisme |2 gtt | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Philosophie | |
650 | 4 | |a Intersubjectivity | |
650 | 4 | |a Intuitionistic mathematics | |
650 | 4 | |a Mathematics |x Philosophy | |
650 | 0 | 7 | |a Intersubjektivität |0 (DE-588)4027489-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Intuitionistische Mathematik |0 (DE-588)4162200-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Intuitionistische Mathematik |0 (DE-588)4162200-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 1 | 1 | |a Intersubjektivität |0 (DE-588)4027489-5 |D s |
689 | 1 | |5 DE-604 | |
830 | 0 | |a Synthese library |v 279 |w (DE-604)BV000005044 |9 279 | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008602155&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |n oe | |
999 | |a oai:aleph.bib-bvb.de:BVB01-008602155 |
Datensatz im Suchindex
_version_ | 1804127318340272128 |
---|---|
adam_text | TOMASZ PLACEK JAGIELLONIAN UNIVERSITY, CRACOW, POLAND MATHEMATICAL
INTUITIONISM AND INTERSUBJECTIVITY A CRITICAL EXPOSITION OF ARGUMENTS
FOR INTUITIONISM KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON
TABLE OF CONTENTS ACKNOWLEDGMENTS XI WORKS FREQUENTLY QUOTED XII CHAPTER
1 INTRODUCTION 1 1 OBJECTIVES OF THIS STUDY 1 2 INTERSUBJECTIVITY AND
CONDITIONS OF INTERSUBJECTIVITY 4 3 MATHEMATICIANS ON INTERSUBJECTIVITY
12 CHAPTER 2 BROUWER S PHILOSOPHY 17 1 THE KNOWING SUBJECT 18 1.1 MIND,
TIME AND OBJECTS 18 1.2 BROUWER AND THE PROBLEM OF OTHER MINDS 22 1.3
THE BASIC INTUITION OF TWO-ITY 27 2 MATHEMATICS AND INTUITION 29 2.1
INFINITELY PROCEEDING SEQUENCES, SPREADS AND SPECIES 29 2.2 WHAT IS NOT
INTUITIONISTICALLY INTUITIVE? 36 2.3 SOME OBJECTIONS TO BROUWER S
CONCEPT OF INTUITION 40 2.4 THE POSSIBLE CONSTRUCTION: BROUWER S NOTION
OF POSSIBILITY 44 3 LANGUAGE, TRUTH AND RELATIONS BETWEEN LOGIC AND
MATHEMATICS 48 3.1 LANGUAGE 48 3.2 AGAINST HILBERT S PROGRAM 51 3.3
BROUWER S AND THE AXIOMATIC-DEDUCTIVE METHOD 54 3.4 WHAT IS LOGIC? 59
3.5 MATHEMATICS VS. LOGIC 62 3.6 AGAINST BEGRIFFE 6 5 3.7 WHAT IS TRUTH?
67 VII VLLL 3.8 THE VALIDITY OF LAWS OF LOGIC 69 3.8.1 WEAK
COUNTEREXAMPLES 69 3.8.2 A RECONSTRUCTION OF BROUWER S ARGUMENT 71 3.8.3
INDETERMINACY OR INFINITY 74 3.8.4 STRONG COUNTEREXAMPLES TO THE
(GENERALIZED) EXCLUDED MIDDLE 79 4 INTERSUBJECTIVITY IN BROUWER S
CONCEPTION OF MATHEMATICS 83 4.1 PSYCHOLOGISM, SUBJECTIVISM, SOLIPSISM?
84 4.2 BROUWER AND INTERSUBJECTIVITY: THE MENTALIST CONDITION 89 4.3 HOW
CAN ONE COMMUNICATE ABOUT MENTAL CONSTRUCTIONS? 90 5 CONCLUSIONS ABOUT
BROUWER S PHILOSOPHY 100 CHAPTER 3 HEYTING S ARGUMENTS 103 1 AGAINST
INTUITIONISTIC PHILOSOPHY, FOR INTUITIONISTIC PSYCHOLOGY? 104 2
INTUITION AS SELF-EVIDENCE 108 3 THE NEUTRALITY ARGUMENT 112 3.1
HEYTING S COUNTEREXAMPLES: WHAT DO THEY PROVE? 113 3.2 FROM ONTOLOGICAL
NEUTRALITY TO THE REPUDIATION OF BIVALENT TRUTH 119 4 THE SEMANTICAL
ARGUMENT 126 4.1 A NOTE ON HEYTING S VIEWS ON FORMALIZATION AND LOGIC
137 5 INTERSUBJECTIVITY IN HEYTING S CONCEPTION 139 6 RESUME OF
HEYTING S ARGUMENTS 144 CHAPTER 4 DUMMETT S CASE FOR INTUITIONISM 147 1
DUMMETT S PROGRAM: AN OVERVIEW 147 2 DUMMETT ON SEMANTIC THEORIES 151
2.1 THREE TASKS OF SEMANTIC THEORIES , 151 2.2 PROGRAMMATIC
INTERPRETATION 155 2.3 SKELETAL SEMANTICS 161 3 DUMMETT ON MEANING AND
ITS BASIS 164 3.1 MEANING, KNOWLEDGE AND UNDERSTANDING 164 3.2 SENSE,
FORCE AND HOLISM 170 3.3 SENSE AND SEMANTIC THEORY 173 4 THE
LANGUAGE-LEARNING ARGUMENT 176 4.1 KNOWLEDGE OF TRUTH CONDITIONS 176 IX
4.2 THE INGREDIENT OF MEANING THAT TRANSCENDS USE 181 4.3 WHY
INTUITIONISTIC PROVABILITY?*HOLISM TO THE RESCUE 187 5 RESUME OF
DUMMETT S ARGUMENT 192 CHAPTER 5 CONCLUSIONS X 194 APPENDIX 197 NOTES
203 BIBLIOGRAPHY 207 INDEX 213
|
any_adam_object | 1 |
author | Placek, Tomasz |
author_facet | Placek, Tomasz |
author_role | aut |
author_sort | Placek, Tomasz |
author_variant | t p tp |
building | Verbundindex |
bvnumber | BV012660257 |
callnumber-first | Q - Science |
callnumber-label | QA8 |
callnumber-raw | QA8.4 |
callnumber-search | QA8.4 |
callnumber-sort | QA 18.4 |
callnumber-subject | QA - Mathematics |
classification_rvk | CC 2600 |
ctrlnum | (OCoLC)40762714 (DE-599)BVBBV012660257 |
dewey-full | 511/.22 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.22 |
dewey-search | 511/.22 |
dewey-sort | 3511 222 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Philosophie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01925nam a2200517 cb4500</leader><controlfield tag="001">BV012660257</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19991001 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">990714s1999 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0792356306</subfield><subfield code="9">0-7923-5630-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)40762714</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012660257</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA8.4</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.22</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 2600</subfield><subfield code="0">(DE-625)17610:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Placek, Tomasz</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical intuitionism and intersubjectivity</subfield><subfield code="b">a critical exposition of arguments for intuitionism</subfield><subfield code="c">Tomasz Placek</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht [u.a.]</subfield><subfield code="b">Kluwer</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 218 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Synthese library</subfield><subfield code="v">279</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Filosofie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Intuïtionisme</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Philosophie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intersubjectivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intuitionistic mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield><subfield code="x">Philosophy</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Intersubjektivität</subfield><subfield code="0">(DE-588)4027489-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Intuitionistische Mathematik</subfield><subfield code="0">(DE-588)4162200-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Intuitionistische Mathematik</subfield><subfield code="0">(DE-588)4162200-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Intersubjektivität</subfield><subfield code="0">(DE-588)4027489-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Synthese library</subfield><subfield code="v">279</subfield><subfield code="w">(DE-604)BV000005044</subfield><subfield code="9">279</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008602155&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="n">oe</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008602155</subfield></datafield></record></collection> |
id | DE-604.BV012660257 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:31:27Z |
institution | BVB |
isbn | 0792356306 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008602155 |
oclc_num | 40762714 |
open_access_boolean | |
owner | DE-739 DE-12 DE-29 DE-11 DE-188 |
owner_facet | DE-739 DE-12 DE-29 DE-11 DE-188 |
physical | XI, 218 S. |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Kluwer |
record_format | marc |
series | Synthese library |
series2 | Synthese library |
spelling | Placek, Tomasz Verfasser aut Mathematical intuitionism and intersubjectivity a critical exposition of arguments for intuitionism Tomasz Placek Dordrecht [u.a.] Kluwer 1999 XI, 218 S. txt rdacontent n rdamedia nc rdacarrier Synthese library 279 Filosofie gtt Intuïtionisme gtt Mathematik Philosophie Intersubjectivity Intuitionistic mathematics Mathematics Philosophy Intersubjektivität (DE-588)4027489-5 gnd rswk-swf Intuitionistische Mathematik (DE-588)4162200-5 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf Intuitionistische Mathematik (DE-588)4162200-5 s DE-604 Mathematik (DE-588)4037944-9 s Intersubjektivität (DE-588)4027489-5 s Synthese library 279 (DE-604)BV000005044 279 HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008602155&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Placek, Tomasz Mathematical intuitionism and intersubjectivity a critical exposition of arguments for intuitionism Synthese library Filosofie gtt Intuïtionisme gtt Mathematik Philosophie Intersubjectivity Intuitionistic mathematics Mathematics Philosophy Intersubjektivität (DE-588)4027489-5 gnd Intuitionistische Mathematik (DE-588)4162200-5 gnd Mathematik (DE-588)4037944-9 gnd |
subject_GND | (DE-588)4027489-5 (DE-588)4162200-5 (DE-588)4037944-9 |
title | Mathematical intuitionism and intersubjectivity a critical exposition of arguments for intuitionism |
title_auth | Mathematical intuitionism and intersubjectivity a critical exposition of arguments for intuitionism |
title_exact_search | Mathematical intuitionism and intersubjectivity a critical exposition of arguments for intuitionism |
title_full | Mathematical intuitionism and intersubjectivity a critical exposition of arguments for intuitionism Tomasz Placek |
title_fullStr | Mathematical intuitionism and intersubjectivity a critical exposition of arguments for intuitionism Tomasz Placek |
title_full_unstemmed | Mathematical intuitionism and intersubjectivity a critical exposition of arguments for intuitionism Tomasz Placek |
title_short | Mathematical intuitionism and intersubjectivity |
title_sort | mathematical intuitionism and intersubjectivity a critical exposition of arguments for intuitionism |
title_sub | a critical exposition of arguments for intuitionism |
topic | Filosofie gtt Intuïtionisme gtt Mathematik Philosophie Intersubjectivity Intuitionistic mathematics Mathematics Philosophy Intersubjektivität (DE-588)4027489-5 gnd Intuitionistische Mathematik (DE-588)4162200-5 gnd Mathematik (DE-588)4037944-9 gnd |
topic_facet | Filosofie Intuïtionisme Mathematik Philosophie Intersubjectivity Intuitionistic mathematics Mathematics Philosophy Intersubjektivität Intuitionistische Mathematik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008602155&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000005044 |
work_keys_str_mv | AT placektomasz mathematicalintuitionismandintersubjectivityacriticalexpositionofargumentsforintuitionism |