Micromechanics: overall properties of heterogeneous materials
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier
1999
|
Ausgabe: | 2., rev. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXIV, 786 S. Ill., graph. Darst. |
ISBN: | 0444500847 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV012561443 | ||
003 | DE-604 | ||
005 | 20140219 | ||
007 | t | ||
008 | 990517s1999 ad|| |||| 00||| eng d | ||
020 | |a 0444500847 |9 0-444-50084-7 | ||
035 | |a (OCoLC)245745337 | ||
035 | |a (DE-599)BVBBV012561443 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-703 |a DE-91 | ||
050 | 0 | |a TA418.9.I53 | |
082 | 0 | |a 620.1 | |
084 | |a UP 2100 |0 (DE-625)146354: |2 rvk | ||
084 | |a MAS 990f |2 stub | ||
084 | |a CIT 280f |2 stub | ||
084 | |a WER 037f |2 stub | ||
100 | 1 | |a Nemat-Nasser, Siavouche |e Verfasser |4 aut | |
245 | 1 | 0 | |a Micromechanics |b overall properties of heterogeneous materials |c by Sia Nemat-Nasser ; Muneo Hori |
250 | |a 2., rev. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Elsevier |c 1999 | |
300 | |a XXIV, 786 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Heterogenität |0 (DE-588)4201275-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Inhomogener Festkörper |0 (DE-588)4225741-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elastizität |0 (DE-588)4014159-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mikromechanik |0 (DE-588)4205811-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Inhomogener Festkörper |0 (DE-588)4225741-4 |D s |
689 | 0 | 1 | |a Mikromechanik |0 (DE-588)4205811-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Elastizität |0 (DE-588)4014159-7 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Heterogenität |0 (DE-588)4201275-2 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
700 | 1 | |a Hori, Muneo |e Verfasser |4 aut | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008529545&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-008529545 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804127208588967936 |
---|---|
adam_text | MICROMECHANICS: OVERALL PROPERTIES OF HETEROGENEOUS MATERIALS SIA
NEMAT-NASSER DEPARTMENT OF APPLIED MECHANICS AND ENGINEERING SCIENCES
UNIVERSITY OF CALIFORNIA, SAN DIEGO LA JOLLA, CA 6 92093-0416, USA MUNEO
HORI EARTHQUAKE RESEARCH INSTITUTE UNIVERSITY OF TOKYO TOKYO, JAPAN
SECOND REVISED EDITION 1999 ELSEVIER AMSTERDAM - LAUSANNE - NEW YORK -
OXFORD - SHANNON - SINGAPORE - TOKYO TABLE OF CONTENTS PREFACE V TABLE
OF CONTENTS IX PARTI OVERALL PROPERTIES OF HETEROGENEOUS MATERIALS
PRECIS: PART 1 CHAPTER I AGGREGATE PROPERTIES AND AVERAGING METHODS 9
SECTION 1. AGGREGATE PROPERTIES 11 1.1. REPRESENTATIVE VOLUME ELEMENT
(RVE) 11 1.2. SCOPE OF THE BOOK 16 1.3. DESCRIPTION OF RVE 19 1.4.
REFERENCES 23 SECTION 2. AVERAGING METHODS 27 2.1. AVERAGE STRESS AND
STRESS RATE 27 2.2. AVERAGE STRAIN AND STRAIN RATE 29 2.3. AVERAGE RATE
OF STRESS-WORK 31 2.3.1. UNIFORM BOUNDARY TRACTIONS 33 2.3.2. LINEAR
BOUNDARY VELOCITIES 34 2.3.3. OTHER USEFUL IDENTITIES 34 2.3.4. VIRTUAL
WORK PRINCIPLE 35 2.4. INTERFACES AND DISCONTINUITIES 35 2.5. POTENTIAL
FUNCTION FOR MACRO-ELEMENTS 38 2.5.1. STRESS POTENTIAL 40 2.5.2. STRAIN
POTENTIAL 41 2.5.3. RELATION BETWEEN MACROPOTENTIALS 42 2.5.4. ON
DEFINITION OF RVE 44 2.5.5. LINEAR VERSUS NONLINEAR RESPONSE 45 2.5.6.
GENERAL RELATIONS BETWEEN MACROPOTENTIALS 45 2.5.7. BOUNDS ON
MACROPOTENTIAL FUNCTIONS 50 TABLE OF CONTENTS 2.6. STATISTICAL
HOMOGENEITY, AVERAGE QUANTITIES, AND OVERALL PROPERTIES 53 2.6.1. LOCAL
AVERAGE FIELDS 55 2.6.2. LIMITING PROCESS AND LIMIT FIELDS 58 2.7.
NONMECHANICAL PROPERTIES 59 2.7.1. AVERAGING THEOREMS 59 2.7.2.
MACROPOTENTIALS 60 2.7.3. BASIC INEQUALITIES 61 2.8. COUPLED MECHANICAL
AND NONMECHANICAL PROPERTIES 63 2.8.1. FIELD EQUATIONS 63 2.8.2.
AVERAGING THEOREMS 65 2.8.3. STRESS/ELECTRIC-FIELD POTENTIAL 66 2.8.4.
STRAIN/ELECTRIC-DISPLACEMENT POTENTIAL 67 2.8.5. BASIC INEQUALITIES 68
2.9. REFERENCES 71 CHAPTER II ELASTIC SOLIDS WITH MICROCAVITIES AND
MICROCRACKS 73 SECTION 3. LINEARLY ELASTIC SOLIDS 75 3.1. HOOKE S LAW
AND MATERIAL SYMMETRY 75 3.1.1. ELASTIC MODULI 75 3.1.2. ELASTIC
COMPLIANCES 77 3.1.3. ELASTIC SYMMETRY 78 3.1.4. PLANE STRAIN/PLANE
STRESS 82 3.2. RECIPROCAL THEOREM, SUPERPOSITION, AND GREEN S FUNCTION
86 3.2.1. RECIPROCAL THEOREM 87 3.2.2. SUPERPOSITION 87 3.2.3. GREEN S
FUNCTION 88 3.3. REFERENCES 91 SECTION 4. ELASTIC SOLIDS WITH
TRACTION-FREE DEFECTS 93 4.1. STATEMENT OF PROBLEM AND NOTATION 93 4.2.
AVERAGE STRAIN FOR PRESCRIBED MACROSTRESS 95 4.3. OVERALL COMPLIANCE
TENSOR FOR POROUS ELASTIC SOLIDS 97 4.4. AVERAGE STRESS FOR PRESCRIBED
MACROSTRAIN 98 4.5. OVERALL ELASTICITY TENSOR FOR POROUS ELASTIC SOLIDS
100 4.6. REFERENCES 102 TABLE OF CONTENTS XI SECTION 5. ELASTIC SOLIDS
WITH MICROCAVITIES 103 5.1. EFFECTIVE MODULI OF AN ELASTIC PLATE
CONTAINING CIRCULAR HOLES 103 5.1.1. ESTIMATES OF THREE-DIMENSIONAL
MODULI FROM TWO-DIMENSIONAL RESULTS 104 5.1.2. EFFECTIVE MODULI: DILUTE
DISTRIBUTION OF CAVITIES 106 5.1.3. EFFECTIVE MODULI: SELF-CONSISTENT
ESTIMATES 111 5.1.4. EFFECTIVE MODULI IN X 3 -DIRECTION 113 5.2.
EFFECTIVE BULK MODULUS OF AN ELASTIC BODY CONTAINING SPHERICAL CAVITIES
115 5.3. ENERGY CONSIDERATION AND SYMMETRY PROPERTIES OF TENSOR H 117
5.4. CAVITY STRAIN 118 5.5. REFERENCES 119 SECTION 6. ELASTIC SOLIDS
WITH MICROCRACKS 121 6.1. OVERALL STRAIN DUE TO MICROCRACKS 121 6.2.
OVERALL COMPLIANCE AND MODULUS TENSORS OF HOMO- GENEOUS LINEARLY ELASTIC
SOLIDS WITH MICROCRACKS 123 6.3. EFFECTIVE MODULI OF AN ELASTIC SOLID
CONTAINING ALIGNED SLIT MICROCRACKS 124 6.3.1. CRACK OPENING
DISPLACEMENTS 125 6.3.2. EFFECTIVE MODULI: DILUTE DISTRIBUTION OF
ALIGNED MICROCRACKS 125 6.3.3. EFFECTIVE MODULI: DILUTE DISTRIBUTION OF
ALIGNED FRICTIONAL MICROCRACKS 129 6.4. EFFECTIVE MODULI OF AN ELASTIC
SOLID CONTAINING RANDOMLY DISTRIBUTED SLIT MICROCRACKS 131 6.4.1.
EFFECTIVE MODULI: RANDOM DILUTE DISTRIBUTION OF OPEN MICROCRACKS 131
6.4.2. EFFECTIVE MODULI: SELF-CONSISTENT ESTIMATE 135 6.4.3. EFFECTIVE
MODULI IN ANTIPLANE SHEAR: RANDOM DILUTE DISTRIBUTION OF FRICTIONLESS
MICROCRACKS 137 6.4.4. PLANE STRESS, PLANE STRAIN, AND THREE-DIMENSIONAL
OVERALL MODULI 140 6.4.5. EFFECT OF FRICTION AND LOAD-INDUCED ANISOTROPY
141 6.5. EFFECTIVE MODULI OF AN ELASTIC BODY CONTAINING ALIGNED
PENNY-SHAPED MICROCRACKS 147 6.5.1. CRACK-OPENING-DISPLACEMENTS 147
6.5.2. EFFECTIVE MODULI: DILUTE DISTRIBUTION OF ALIGNED MICROCRACKS 147
6.6. EFFECTIVE MODULI OF AN ELASTIC BODY CONTAINING RANDOMLY DISTRIBUTED
PENNY-SHAPED MICROCRACKS 151 6.6.1. DILUTE OPEN MICROCRACKS WITH
PRESCRIBED DISTRIBUTION 151 6.6.2. EFFECTIVE MODULI: RANDOM DILUTE
DISTRIBUTION OF MICROCRACKS 154 6.6.3. EFFECTIVE MODULI: SELF-CONSISTENT
ESTIMATES 158 XLL TABLE OF CONTENTS 6.7. EFFECTIVE MODULI OF AN ELASTIC
BODY CONTAINING PENNY-SHAPED MICROCRACKS PARALLEL TO AN AXIS 162 6.8.
INTERACTION EFFECTS 167 6.8.1. CRACK-OPENING-DISPLACEMENTS AND
ASSOCIATED STRAINS 168 6.8.2. DILUTE DISTRIBUTION OF PARALLEL CRACK
ARRAYS 170 6.8.3. RANDOMLY ORIENTED OPEN SLIT CRACK ARRAYS PARALLEL TO
AN AXIS 172 6.9. BRITTLE FAILURE IN COMPRESSION 174 6.9.1. INTRODUCTORY
COMMENTS 174 6.9.2. BRIDGMAN PARADOXES 176 6.9.3. A NEW LOOK AT
MICROCRACKING IN COMPRESSION 180 6.9.4. MODEL CALCULATIONS: AXIAL
SPLITTING 184 6.9.5. MODEL CALCULATIONS: FAULTING 187 6.9.6. MODEL
CALCULATIONS: BRITTLE-DUCTILE TRANSITION 188 6.10. DYNAMIC BRITTLE
FAILURE IN COMPRESSION 193 6.10.1. STRAIN-RATE EFFECT ON BRITTLE FAILURE
IN COMPRESSION 195 6.10.2. ILLUSTRATIVE EXAMPLES OF DYNAMIC BRITTLE
FAILURE IN COMPRESSION 197 6.11. REFERENCES 200 CHAPTER III ELASTIC
SOLIDS WITH MICRO-INCLUSIONS 207 SECTION 7. OVERALL ELASTIC MODULUS AND
COMPLIANCE TENSORS 209 7.1. MACROSTRESS PRESCRIBED 209 7.2. MACROSTRAIN
PRESCRIBED 212 7.3. EIGENSTRAIN AND EIGENSTRESS TENSORS 213 7.3.1.
EIGENSTRAIN 215 7.3.2. EIGENSTRESS 216 7.3.3. UNIFORM EIGENSTRAIN AND
EIGENSTRESS 216 7.3.4. CONSISTENCY CONDITIONS 218 7.3.5. H- AND
J-TENSORS 220 7.3.6. ESHELBY S TENSOR FOR SPECIAL CASES 221 7.3.7.
TRANSFORMATION STRAIN 223 7.4. ESTIMATES OF OVERALL MODULUS AND
COMPLIANCE TENSORS: DILUTE DISTRIBUTION 225 7.4.1. MACROSTRESS
PRESCRIBED 226 7.4.2. MACROSTRAIN PRESCRIBED 227 7.4.3. EQUIVALENCE
BETWEEN OVERALL COMPLIANCE AND ELASTICITY TENSORS 228 7.5. ESTIMATES OF
OVERALL MODULUS AND COMPLIANCE TABLE OF CONTENTS XLLL TENSORS:
SELF-CONSISTENT METHOD 229 7.5.1. MACROSTRESS PRESCRIBED 230 7.5.2.
MACROSTRAIN PRESCRIBED 231 7.5.3. EQUIVALENCE OF OVERALL COMPLIANCE AND
ELASTICITY TENSORS OBTAINED BY SELF-CONSISTENT METHOD 231 7.5.4. OVERALL
ELASTICITY AND COMPLIANCE TENSORS FOR POLYCRYSTALS 233 7.6. ENERGY
CONSIDERATION AND SYMMETRY OF OVERALL ELASTICITY AND COMPLIANCE TENSORS
235 7.6.1. MACROSTRAIN PRESCRIBED 236 7.6.2. MACROSTRESS PRESCRIBED 237
7.6.3. EQUIVALENCE OF OVERALL COMPLIANCE AND ELASTICITY TENSORS OBTAINED
ON THE BASIS OF ELASTIC ENERGY 238 7.6.4. CERTAIN EXACT IDENTITIES
INVOLVING OVERALL ELASTIC ENERGY 240 7.7. REFERENCES 242 SECTION 8.
EXAMPLES OF ELASTIC SOLIDS WITH ELASTIC MICRO-INCLUSIONS 245 8.1. RANDOM
DISTRIBUTION OF SPHERICAL MICRO-INCLUSIONS 245 8.1.1. EFFECTIVE MODULI:
DILUTE DISTRIBUTION OF SPHERICAL INCLUSIONS 246 8.1.2. EFFECTIVE MODULI:
SELF-CONSISTENT ESTIMATES 248 8.2. EFFECTIVE MODULI OF AN ELASTIC PLATE
CONTAINING ALIGNED REINFORCING-FIBERS 250 8.2.1. EFFECTIVE MODULI:
DILUTE DISTRIBUTION OF FIBERS 254 8.2.2. EFFECTIVE MODULI:
SELF-CONSISTENT ESTIMATES 255 8.2.3. EFFECTIVE MODULI IN ANTIPLANE
SHEAR: DILUTE-DISTRIBUTION AND SELF-CONSISTENT ESTIMATES 256 8.3.
THREE-DIMENSIONAL ANALYSIS OF PLANE STRAIN AND PLANE STRESS STATES 259
8.3.1. REDUCTION OF THREE-DIMENSIONAL MODULI TO TWO-DIMENSIONAL MODULI
259 8.3.2. TWO-DIMENSIONAL NOMINAL ESHELBY TENSOR 260 8.3.3. COMPUTATION
OF NOMINAL ESHELBY TENSOR FOR PLANE STRESS 261 8.4. REFERENCES 262
SECTION 9. UPPER AND LOWER BOUNDS FOR OVERALL ELASTIC MODULI 265 9.1.
HASHIN-SHTRIKMAN VARIATIONAL PRINCIPLE 267 9.1.1. MACROSTRESS PRESCRIBED
267 9.1.2. MACROSTRAIN PRESCRIBED 271 9.2. UPPER AND LOWER BOUNDS FOR
ENERGY FUNCTIONALS 275 9.2.1. STIFF MICRO-INCLUSIONS 276 9.2.2.
COMPLIANT MICRO-INCLUSIONS 278 9.2.3. BOUNDS FOR ELASTIC STRAIN AND
COMPLEMENTARY ELASTIC ENERGIES 278 9.3. GENERALIZED BOUNDS ON OVERALL
ENERGIES 280 XIV TABLE OF CONTENTS 9.3.1. CORRELATION TENSORS 281 9.3.2.
UPPER AND LOWER BOUNDS ON OVERALL ENERGIES 283 9.3.3. SUBREGION
APPROXIMATION METHOD 286 9.4. DIRECT ESTIMATES OF OVERALL MODULI 287
9.4.1. BOUNDARY-VALUE PROBLEMS FOR EQUIVALENT HOMOGENEOUS SOLID 288
9.4.2. SIMPLIFIED INTEGRAL OPERATORS 290 9.4.3. APPROXIMATE CORRELATION
TENSORS 291 9.4.4. OPTIMAL EIGENSTRAINS AND EIGENSTRESSES 294 9.5.
GENERALIZED VARIATIONAL PRINCIPLES; EXACT BOUNDS 296 9.5.1.
GENERALIZATION OF ENERGY FUNCTIONALS AND BOUNDS 296 9.5.2. INEQUALITIES
AMONG GENERALIZED ENERGY FUNCTIONALS 302 9.5.3. FUNCTIONALS WITH
SIMPLIFIED INTEGRAL OPERATORS 303 9.5.4. EXACT BOUNDS BASED ON
SIMPLIFIED FUNCTIONALS 310 9.5.5. CALCULATION OF BOUNDS 314 9.5.6.
ALTERNATIVE FORMULATION OF EXACT INEQUALITIES: DIRECT EVALUATION OF
EXACT B OUNDS 316 9.6. UNIVERSAL BOUNDS FOR OVERALL MODULI 320 9.6.1.
EQUIVALENCE OF TWO APPROXIMATE FUNCTIONALS 321 9.6.2. SUMMARY OF EXACT
INEQUALITIES 322 9.6.3. UNIVERSAL BOUNDS FOR OVERALL MODULI OF
ELLIPSOIDAL RVE (1) 323 9.6.4. UNIVERSAL BOUNDS FOR OVERALL MODULI OF
ELLIPSOIDAL RVE (2) 327 9.6.5. RELATION BETWEEN UNIVERSAL BOUNDS AND
ESTIMATED BOUNDS 328 9.7. BOUNDS FOR OVERALL NONMECHANICAL MODULI 330
9.7.1. GENERALIZED HASHIN-SHTRIKMAN VARIATIONAL PRINCIPLE 331 9.7.2.
CONSEQUENCE OF UNIVERSAL THEOREMS 333 9.7.3. UNIVERSAL BOUNDS FOR
OVERALL CONDUCTIVITY 335 9.8. BOUNDS FOR OVERALL MODULI OF PIEZOELECTRIC
RVE S 339 9.8.1. GENERALIZED HASHIN-SHTRIKMAN VARIATIONAL PRINCIPLE 339
9.8.2. CONSEQUENCE OF UNIVERSAL THEOREMS 343 9.8.3. COMMENTS ON
COMPUTING BOUNDS FOR OVERALL MODULI 346 9.9. REFERENCES 349 SECTION 10.
SELF-CONSISTENT, DIFFERENTIAL, AND RELATED AVERAGING METHODS 353 10.1.
SUMMARY OF EXACT RELATIONS BETWEEN AVERAGE QUANTITIES 353 10.1.1.
ASSUMPTIONS IN DILUTE-DISTRIBUTION MODEL 354 10.1.2. DILUTE
DISTRIBUTION: MODELING APPROXIMATION 356 10.2. SELF-CONSISTENT METHOD
357 10.3. DIFFERENTIAL SCHEME 361 10.3.1. TWO-PHASE RVE 362 10.3.2.
MULTI-PHASE RVE 364 10.3.3. EQUIVALENCE BETWEEN OVERALL ELASTICITY AND
COMPLIANCE TENSORS 367 TABLE OF CONTENTS XV 10.4. TWO-PHASE MODEL AND
DOUBLE-INCLUSION METHOD 368 10.4.1. BASIC FORMULATION: TWO-PHASE MODEL
369 10.4.2. COMMENTS ON TWO-PHASE MODEL 373 10.4.3. RELATION WITH
HASHIN-SHTRIKMAN BOUNDS 374 10.4.4. GENERALIZATION OF ESHELBY S RESULTS
375 10.4.5. DOUBLE-INCLUSION METHOD 378 10.4.6. MULTI-INCLUSION METHOD
381 10.4.7. MULTI-PHASE COMPOSITE MODEL 382 10.4.8. BOUNDS ON OVERALL
MODULI BY DOUBLE-INCLUSION METHOD 384 10.5. EQUIVALENCE AMONG ESTIMATES
BY DILUTE DISTRI- BUTION, SELF-CONSISTENT, DIFFERENTIAL, AND DOUBLE-
INCLUSION METHODS 386 10.6. OTHER AVERAGING SCHEMES 388 10.6.1.
COMPOSITE-SPHERES MODEL 389 10.6.2. THREE-PHASE MODEL 390 10.7.
REFERENCES 394 SECTION 11. ESHELBY S TENSOR AND RELATED TOPICS 397 11.1.
EIGENSTRAIN AND EIGENSTRESS PROBLEMS 397 11.1.1. GREEN S FUNCTION FOR
INFINITE DOMAIN 398 11.1.2. THE BODY-FORCE PROBLEM 399 11.1.3. THE
EIGENSTRAIN- OR EIGENSTRESS-PROBLEM 400 11.2. ESHELBY S TENSOR 402
11.2.1. UNIFORM EIGENSTRAINS IN AN ELLIPSOIDAL DOMAIN 402 11.2.2.
ESHELBY S TENSOR FOR AN ISOTROPIC SOLID 403 11.2.3. ESHELBY S TENSOR
FOR ANISOTROPIC MEDIA 406 11.3. SOME BASIC PROPERTIES OF ESHELBY S
TENSOR 407 11.3.1. SYMMETRY OF THE ESHELBY TENSOR 407 11.3.2. CONJUGATE
ESHELBY TENSOR 408 11.3.3. EVALUATION OF AVERAGE QUANTITIES 409 11.4.
RELATIONS AMONG AVERAGE QUANTITIES 412 11.4.1. GENERAL RELATIONS 412
11.4.2. SUPERPOSITION OF UNIFORM STRAIN AND STRESS FIELDS 414 11.4.3.
PRESCRIBED BOUNDARY CONDITIONS 415 11.5. REFERENCES 417 CHAPTER IV
SOLIDS WITH PERIODIC MICROSTRUCTURE 419 SECTION 12. GENERAL PROPERTIES
AND FIELD EQUATIONS 421 12.1. PERIODIC MICROSTRUCTURE AND RVE 421 12.2.
PERIODICITY AND UNIT CELL 422 12.3. FOURIER SERIES 424 XVI TABLE OF
CONTENTS 12.3.1. DISPLACEMENT AND STRAIN FIELDS 425 12.3.2. STRESS FIELD
427 12.4. HOMOGENIZATION 428 12.4.1. PERIODIC EIGENSTRAIN AND
EIGENSTRESS FIELDS 428 12.4.2. GOVERNING EQUATIONS 429 12.4.3. PERIODIC
INTEGRAL OPERATORS 430 12.4.4. ISOTROPIC MATRIX 432 12.4.5. CONSISTENCY
CONDITIONS 433 12.4.6. ALTERNATIVE FORMULATION 435 12.5. TWO-PHASE
PERIODIC MICROSTRUCTURE 439 12.5.1. AVERAGE EIGENSTRAIN FORMULATION 439
12.5.2. MODIFICATION FOR MULTI-PHASE PERIODIC MICROSTRUCTURE 442 12.5.3.
PROPERTIES OF THE G-INTEGRAL 442 12.6. ELASTIC INCLUSIONS AND CAVITIES
444 12.6.1. ELASTIC SPHERICAL INCLUSIONS 445 12.6.2. ELASTIC ELLIPSOIDAL
INCLUSIONS 447 12.6.3. CYLINDRICAL VOIDS 448 12.7. PERIODICALLY
DISTRIBUTED MICROCRACKS 450 12.7.1. LIMIT OF ESHELBY S SOLUTION 451
12.7.2. THE G-INTEGRAL FOR A CRACK 453 12.7.3. PIECEWISE CONSTANT
DISTRIBUTION OF EIGENSTRAIN 454 12.7.4. STRESS INTENSITY FACTOR OF
PERIODIC CRACKS 457 12.7.5. ILLUSTRATIVE EXAMPLES 459 12.8. APPLICATION
TO NONLINEAR COMPOSITES 461 12.9. REFERENCES 464 SECTION 13. OVERALL
PROPERTIES OF SOLIDS WITH PERIODIC MICROSTRUCTURE 467 13.1. GENERAL
EQUIVALENT HOMOGENEOUS SOLID 468 13.1.1. NOTATION AND INTRODUCTORY
COMMENTS 468 13.1.2. MACROFIELD VARIABLES AND HOMOGENEOUS SOLUTIONS 469
13.1.3. PERIODIC MICROSTRUCTURE VERSUS RVE 471 13.1.4. UNIT CELL AS A
BOUNDED BODY 472 13.1.5. EQUIVALENT HOMOGENEOUS SOLID FOR PERIODIC
MICROSTRUCTURE 473 13.2. HASHIN-SHTRIKMAN VARIATIONAL PRINCIPLE APPLIED
TO PERIODIC STRUCTURES 476 13.2.1. SELF-ADJOINTNESS 476 13.2.2.
HASHIN-SHTRIKMAN VARIATIONAL PRINCIPLE AND BOUNDS ON OVERALL MODULI 478
13.2.3. EQUIVALENCE OF TWO ENERGY FUNCTIONALS 479 13.2.4. ALTERNATIVE
FORMULATION OF EXACT BOUNDS 482 13.3. APPLICATION OF FOURIER SERIES
EXPANSION TO ENERGY FUNCTIONALS 485 13.3.1. FOURIER SERIES
REPRESENTATION OF EIGENSTRESS 485 TABLE OF CONTENTS XV11 13.3.2.
TRUNCATED FOURIER SERIES OF EIGENSTRESS FIELD 487 13.3.3. MATRIX
REPRESENTATION OF EULER EQUATIONS 488 13.4. EXAMPLE: ONE-DIMENSIONAL
PERIODIC MICROSTRUCTURE 491 13.4.1. EXACT SOLUTION 491 13.4.2.
EQUIVALENT HOMOGENEOUS SOLID WITH PERIODIC EIGENSTRESS FIELD 493 13.4.3.
HASHIN-SHTRIKMAN VARIATIONAL PRINCIPLE 494 13.5. PIECEWISE CONSTANT
APPROXIMATION AND UNIVERSAL BOUNDS 497 13.5.1. PIECEWISE CONSTANT
APPROXIMATION OF EIGENSTRESS FIELD 497 13.5.2. COMPUTATION OF ENERGY
FUNCTIONS AND UNIVERSAL BOUNDS 499 13.5.3. GENERAL PIECEWISE CONSTANT
APPROXIMATION OF EIGENSTRESS FIELD 502 13.6. EXAMPLES 505 13.6.1.
EXAMPLE (1): ONE-DIMENSIONAL PERIODIC STRUCTURE 505 13.6.2. EXAMPLE (2):
THREE-DIMENSIONAL PERIODIC STRUCTURE 506 13.7. REFERENCES 510 SECTION
14. MIRROR-IMAGE DECOMPOSITION OF PERIODIC FIELDS 511 14.1. MIRROR
IMAGES OF POSITION VECTORS AND VECTORS 511 14.2. MIRROR-IMAGE
SYMMETRY/ANTISYMMETRY OF TENSOR FIELDS 516 14.2.1. MIRROR-IMAGE (MI)
SYM/ANT OF TENSOR FIELDS 516 14.2.2. MI SYM/ANT DECOMPOSITION OF TENSOR
FIELDS 517 14.2.3. COMPONENTS OF MI SYM/ANT PARTS 519 14.2.4. OPERATIONS
ON MI SYM/ANT PARTS OF TENSOR FIELDS 520 14.3. MIRROR-IMAGE SYMMETRY AND
ANTISYMMETRY OF FOURIER SERIES 521 14.3.1. MI SYM/ANT OF COMPLEX KERNEL
521 14.3.2. MI SYM/ANT OF FOURIER SERIES 522 14.4. BOUNDARY CONDITIONS
FOR A UNIT CELL 526 14.4.1. SYMMETRY OF UNIT CELL 526 14.4.2. MI SYM/ANT
FIELDS FOR A SYMMETRIC UNIT CELL 527 14.4.3. SURFACE DATA FOR MI SYM/ANT
SET OF PERIODIC FIELDS IN A SYMMETRIC UNIT CELL 529 14.4.4.
HOMOGENEOUS FIELDS 531 14.5. FOURIER SERIES EXPANSION OF MI SYM/ANT SET
OF PERIODIC FIELDS 532 14.5.1. MI SYM/ANT DECOMPOSITION OF GOVERNING
FIELD EQUATIONS 532 14.5.2. ISOTROPIC EQUIVALENT HOMOGENEOUS SOLID 535
14.6. APPLICATION OF HASHIN-SHTRIKMAN VARIATIONAL PRINCIPLE 537 XV111
TABLE OF CONTENTS 14.6.1. INNER PRODUCT OF STRESS AND STRAIN 537 14.6.2.
APPLICATION OF MI SYM/ANT DECOMPOSITION TO ENERGY FUNCTIONAL 538 14.6.3.
APPLICATION OF MI SYM/ANT DECOMPOSITION TO QUADRATIC FORMS 540 14.6.4.
TWO-PHASE PERIODIC STRUCTURE 543 14.7. REFERENCES 546 APPENDIX A
APPLICATION TO INELASTIC HETERO- GENEOUS SOLIDS 547 A. 1. SOURCES OF
INELASTICITY 547 A.2. RATE-INDEPENDENT PHENOMENOLOGICAL PLASTICITY 548
A.2.1. CONSTITUTIVE RELATIONS: SMOOTH YIELD SURFACE 549 A.2.2. FLOW
POTENTIAL AND ASSOCIATIVE FLOW RULE 550 A.2.3. THE J2-FI0W THEORY WITH
ISOTROPIC HARDENING 551 A.2.4. THE J2-FI0W THEORY WITH KINEMATIC
HARDENING 552 A.2.5. THE J2-FI0W THEORY WITH DILATANCY AND PRESSURE
SENSITIVITY 553 A.2.6. CONSTITUTIVE RELATIONS: YIELD VERTEX 554 A.2.7.
CRYSTAL PLASTICITY 556 A.2.8. AGGREGATE PROPERTIES 557 A.3.
RATE-DEPENDENT THEORIES 558 A.3.1. RATE DEPENDENT J 2 -PLASTICITY 559
A.3.2. EMPIRICAL MODELS 559 A.3.3. PHYSICALLY-BASED MODELS 560 A.3.4.
DRAG-CONTROLLED PLASTIC FLOW 563 A.3.5. VISCOPLASTIC J2-FI0W THEORY 566
A.3.6. NONLINEAR VISCOPLASTIC MODEL 566 A. 3.7. RATE-DEPENDENT CRYSTAL
PLASTICITY 5 67 A.4. REFERENCES 568 APPENDIX B HOMOGENIZATION THEORY 573
B.I. SUMMARY OF AVERAGE FIELD THEORY 573 B.2. SUMMARY OF HOMOGENIZATION
THEORY 575 B.3. EXTENSION OF HOMOGENIZATION THEORY 578 B.4. EFFECT OF
STRAIN GRADIENT 580 B.5. REFERENCES 584 APPENDIX C UNIFORM FIELD THEORY
587 C.I. APPLICATION OF UNIFORM FIELD THEORY TO THERMOELASTICITY OF
HETEROGENEOUS SOLIDS 587 C.2. VERIFICATION OF AVERAGE FIELD THEORY 589
C.3. APPLICATION OF UNIFORM FIELD THEORY TO COMPOSITES WITH ALIGNED
FIBERS 592 C.4. REFERENCES 594 TABLE OF CONTENTS XIX APPENDIX D
IMPROVABLE BOUNDS ON OVERALL PROPERTIES OF HETEROGENEOUS FINITE SOLIDS
595 D. 1. BOUNDS ON POTENTIALS FOR GENERAL BOUNDARY DATA 595 D. 1.1.
WEAK KINEMATICAL OR STATISTICAL ADMISSIBILITY 595 D. 1.2. BOUNDS ON
POTENTIALS 597 D. 1.3. CALCULATION OF BOUNDS ON OVERALL POTENTIALS 599
D.I.4. BOUNDS BY DISCRETIZATION 602 D.2. LINEAR COMPOSITES 602 D.2.1.
EXAMPLES OF CLOSED-FORM BOUNDS 604 D.3. REFERENCES 611 TABLE OF CONTENTS
XXI PART 2 INTRODUCTION TO BASIC ELEMENTS OF ELASTICITY THEORY PRECIS:
PART 2 617 CHAPTER V FOUNDATIONS 621 SECTION 15. GEOMETRIC FOUNDATIONS
623 15.1. VECTOR SPACE 623 15.2. ELEMENTARY CONCEPTS IN
THREE-DIMENSIONAL SPACE 624 15.2.1. RECTANGULAR CARTESIAN COORDINATES
624 15.2.2. TRANSFORMATION OF COORDINATES 627 15.3. TENSORS IN
THREE-DIMENSIONAL VECTOR SPACE 627 15.3.1. VECTOR AS FIRST-ORDER TENSOR
627 15.3.2. SECOND-ORDER TENSOR 628 15.3.3. HIGHER-ORDER TENSORS 630
15.3.4. REMARKS ON SECOND-ORDER TENSORS 630 15.4. DEL OPERATOR AND THE
GAUSS THEOREM 632 15.5. SPECIAL TOPICS IN TENSOR ALGEBRA 635 15.5.1.
SECOND-ORDER BASE TENSORS 635 15.5.2. MATRIX OPERATIONS FOR SECOND- AND
FOURTH-ORDER TENSORS 636 15.5.3. SECOND-ORDER SYMMETRIC BASE TENSORS 637
15.5.4. MATRIX OPERATIONS FOR SECOND- AND FOURTH-ORDER SYMMETRIC TENSORS
638 15.6. SPECTRAL REPRESENTATION OF FOURTH-ORDER SYMMETRIC TENSORS 642
15.7. CYLINDRICAL AND SPHERICAL COORDINATES 645 15.8. REFERENCES 649
SECTION 16. KINEMATIC FOUNDATIONS 651 16.1. DEFORMATION AND STRAIN
MEASURES 651 16.2. INFINITESIMAL STRAIN MEASURE 654 16.2.1. EXTENSION,
SHEAR STRAIN, AND ROTATION 655 16.2.2. PURE DEFORMATION 656 16.2.3.
COMPATIBILITY CONDITIONS 660 16.2.4. TWO-DIMENSIONAL CASE 663 16.3.
REFERENCES 664 SECTION 17. DYNAMIC FOUNDATIONS 667 17.1. EULER S LAWS
667 XX11 TABLE OF CONTENTS 17.2. TRACTION VECTORS AND STRESS TENSOR 669
17.2.1. TRACTION VECTORS 669 17.2.2. STRESS TENSOR 671 17.2.3. CAUCHY S
LAWS 672 17.2.4. PRINCIPAL STRESSES 673 17.3. GEOMETRICAL REPRESENTATION
OF STRESS TENSOR 674 17.3.1. MOHR S CIRCLE 675 17.3.2. QUADRATIC FORM
676 17.4. REFERENCES 677 SECTION 18. CONSTITUTIVE RELATIONS 679 18.1.
STRAIN ENERGY DENSITY 679 18.1.1. CONSERVATION LAWS 679 18.1.2. STRAIN
ENERGY DENSITY FUNCTION W 681 18.2. LINEAR ELASTICITY 682 18.2.1.
ELASTICITY 682 18.2.2. LINEAR ELASTICITY 683 18.3. ELASTICITY AND
COMPLIANCE TENSORS 684 18.3.1. POSITIVE-DEFINITENESS 684 18.3.2. STRONG
ELLIPTICITY 685 18.4. REFERENCES 686 CHAPTER VI ELASTOSTATIC PROBLEMS OF
LINEAR ELASTICITY 687 SECTION 19. BOUNDARY-VALUE PROBLEMS AND EXTREMUM
PRINCIPLES 689 19.1. BOUNDARY-VALUE PROBLEMS 689 19.2. KINEMATICALLY AND
STATICALLY ADMISSIBLE FIELDS 691 19.2.1. KINEMATICALLY ADMISSIBLE
DISPLACEMENT FIELD 691 19.2.2. STATICALLY ADMISSIBLE STRESS FIELD 692
19.3. POTENTIAL ENERGY 693 19.3.1. VIRTUAL WORK PRINCIPLE 693 19.3.2.
VARIATIONAL PRINCIPLE FOR KINEMATICALLY ADMISSIBLE DISPLACEMENT FIELDS
694 19.3.3. MINIMUM POTENTIAL ENERGY 694 19.4. COMPLEMENTARY ENERGY ,-
696 19.4.1. VIRTUAL WORK PRINCIPLE FOR VIRTUAL STRESS 696 19.4.2.
VARIATIONAL PRINCIPLE FOR STATICALLY ADMISSIBLE STRESS FIELDS 697
19.4.3. MINIMUM COMPLEMENTARY ENERGY 697 19.5. GENERAL VARIATIONAL
PRINCIPLES 699 19.5.1. GENERAL POTENTIAL ENERGY 699 19.5.2. JUMP
CONDITIONS AT DISCONTINUITY SURFACES 701 TABLE OF CONTENTS XX111 19.6.
REFERENCES 704 SECTION 20. THREE-DIMENSIONAL PROBLEMS 705 20.1.
HELMHOLTZ S DECOMPOSITION THEOREM 705 20.2. WAVE EQUATIONS 706 20.3.
PAPKOVICH-NEUBER REPRESENTATION 709 20.3.1. PAPKOVICH-NEUBER
REPRESENTATION 709 20.3.2. GALERKIN VECTOR 711 20.4. CONCENTRATED FORCE
IN INFINITE AND SEMI-INFINITE SOLIDS 712 20.4.1. GREEN S SECOND IDENTITY
712 20.4.2. INFINITELY EXTENDED SOLID 712 20.4.3. SEMI-INFINITE BODY
WITH NORMAL CONCENTRATED FORCES 714 20.4.4. SEMI-INFINITE BODY WITH
TANGENTIAL CONCENTRATED FORCES 717 20.5. REFERENCES 720 SECTION 21.
SOLUTIONS OF SINGULAR PROBLEMS 723 21.1. AIRY S STRESS FUNCTION 723
21.1.1. SOLUTION TO EQUILIBRIUM EQUATIONS 723 21.1.2. GOVERNING EQUATION
FOR AIRY S STRESS FUNCTION 724 21.1.3. ANALYTIC FUNCTIONS 725 21.1.4.
BI-HARMONIC FUNCTIONS 726 21.2. GREEN S FUNCTION AND DISLOCATION 728
21.2.1. GREEN S FUNCTION 728 21.2.2. DISLOCATION 731 21.2.3. CENTER OF
DILATATION AND DISCLINATION 732 21.3. THE HILBERT PROBLEM 734 21.3.1.
HOLOMORPHIC FUNCTIONS 734 21.3.2. THE CAUCHY INTEGRAL 735 21.3.3. THE
HILBERT PROBLEM 736 21.3.4. EXAMPLES 738 21.4. TWO-DIMENSIONAL CRACK
PROBLEMS 739 21 A.I. CRACK AND DISLOCATIONS 740 21.4.2. INTEGRAL
EQUATION FOR DISLOCATION DENSITY 740 21.4.3. EXAMPLE 741 21.4.4.
ALTERNATIVE INTEGRAL EQUATION FOR CRACK PROBLEM 742 21.4.5. FINITE-PART
INTEGRAL 744 21.5. ANISOTROPIC CASE 745 21.5.1. AIRY S STRESS FUNCTION
AND MUSKHELISHVILI S COMPLEX POTENTIALS FOR ANISOTROPIC MATERIALS 746
21.5.2. DISLOCATION IN ANISOTROPIC MEDIUM 748 21.5.3. CRACK IN
ANISOTROPIC MEDIUM 751 21.5.4. FULL OR PARTIAL CRACK BRIDGING 753 21.6.
DUALITY PRINCIPLES IN ANISOTROPIC ELASTICITY 754 XXIV TABLE OF CONTENTS
21.6.1. A GENERAL DUALITY PRINCIPLE 21.6.2. AN EXAMPLE 21.6.3. DUAL
BOUNDARY CONDITIONS 21.6.4. FUNDAMENTAL ELASTICITY MATRIX WITH REPEATED
EIGENVALUES 21.6.5. EXAMPLES OF DUALITY 21.7. REFERENCES AUTHOR INDEX
SUBJECT INDEX 759 760 763 765 767 768 771 779
|
any_adam_object | 1 |
author | Nemat-Nasser, Siavouche Hori, Muneo |
author_facet | Nemat-Nasser, Siavouche Hori, Muneo |
author_role | aut aut |
author_sort | Nemat-Nasser, Siavouche |
author_variant | s n n snn m h mh |
building | Verbundindex |
bvnumber | BV012561443 |
callnumber-first | T - Technology |
callnumber-label | TA418 |
callnumber-raw | TA418.9.I53 |
callnumber-search | TA418.9.I53 |
callnumber-sort | TA 3418.9 I53 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UP 2100 |
classification_tum | MAS 990f CIT 280f WER 037f |
ctrlnum | (OCoLC)245745337 (DE-599)BVBBV012561443 |
dewey-full | 620.1 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1 |
dewey-search | 620.1 |
dewey-sort | 3620.1 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Werkstoffwissenschaften Chemie-Ingenieurwesen Maschinenbau |
edition | 2., rev. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02038nam a2200517 c 4500</leader><controlfield tag="001">BV012561443</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140219 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">990517s1999 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444500847</subfield><subfield code="9">0-444-50084-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)245745337</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012561443</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA418.9.I53</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 2100</subfield><subfield code="0">(DE-625)146354:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAS 990f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CIT 280f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WER 037f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nemat-Nasser, Siavouche</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Micromechanics</subfield><subfield code="b">overall properties of heterogeneous materials</subfield><subfield code="c">by Sia Nemat-Nasser ; Muneo Hori</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2., rev. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIV, 786 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Heterogenität</subfield><subfield code="0">(DE-588)4201275-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inhomogener Festkörper</subfield><subfield code="0">(DE-588)4225741-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elastizität</subfield><subfield code="0">(DE-588)4014159-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mikromechanik</subfield><subfield code="0">(DE-588)4205811-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Inhomogener Festkörper</subfield><subfield code="0">(DE-588)4225741-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mikromechanik</subfield><subfield code="0">(DE-588)4205811-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Elastizität</subfield><subfield code="0">(DE-588)4014159-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Heterogenität</subfield><subfield code="0">(DE-588)4201275-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hori, Muneo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008529545&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008529545</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV012561443 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:29:42Z |
institution | BVB |
isbn | 0444500847 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008529545 |
oclc_num | 245745337 |
open_access_boolean | |
owner | DE-29T DE-703 DE-91 DE-BY-TUM |
owner_facet | DE-29T DE-703 DE-91 DE-BY-TUM |
physical | XXIV, 786 S. Ill., graph. Darst. |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Elsevier |
record_format | marc |
spelling | Nemat-Nasser, Siavouche Verfasser aut Micromechanics overall properties of heterogeneous materials by Sia Nemat-Nasser ; Muneo Hori 2., rev. ed. Amsterdam [u.a.] Elsevier 1999 XXIV, 786 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Heterogenität (DE-588)4201275-2 gnd rswk-swf Inhomogener Festkörper (DE-588)4225741-4 gnd rswk-swf Elastizität (DE-588)4014159-7 gnd rswk-swf Mikromechanik (DE-588)4205811-9 gnd rswk-swf Inhomogener Festkörper (DE-588)4225741-4 s Mikromechanik (DE-588)4205811-9 s DE-604 Elastizität (DE-588)4014159-7 s 1\p DE-604 Heterogenität (DE-588)4201275-2 s 2\p DE-604 Hori, Muneo Verfasser aut HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008529545&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Nemat-Nasser, Siavouche Hori, Muneo Micromechanics overall properties of heterogeneous materials Heterogenität (DE-588)4201275-2 gnd Inhomogener Festkörper (DE-588)4225741-4 gnd Elastizität (DE-588)4014159-7 gnd Mikromechanik (DE-588)4205811-9 gnd |
subject_GND | (DE-588)4201275-2 (DE-588)4225741-4 (DE-588)4014159-7 (DE-588)4205811-9 |
title | Micromechanics overall properties of heterogeneous materials |
title_auth | Micromechanics overall properties of heterogeneous materials |
title_exact_search | Micromechanics overall properties of heterogeneous materials |
title_full | Micromechanics overall properties of heterogeneous materials by Sia Nemat-Nasser ; Muneo Hori |
title_fullStr | Micromechanics overall properties of heterogeneous materials by Sia Nemat-Nasser ; Muneo Hori |
title_full_unstemmed | Micromechanics overall properties of heterogeneous materials by Sia Nemat-Nasser ; Muneo Hori |
title_short | Micromechanics |
title_sort | micromechanics overall properties of heterogeneous materials |
title_sub | overall properties of heterogeneous materials |
topic | Heterogenität (DE-588)4201275-2 gnd Inhomogener Festkörper (DE-588)4225741-4 gnd Elastizität (DE-588)4014159-7 gnd Mikromechanik (DE-588)4205811-9 gnd |
topic_facet | Heterogenität Inhomogener Festkörper Elastizität Mikromechanik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008529545&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT nematnassersiavouche micromechanicsoverallpropertiesofheterogeneousmaterials AT horimuneo micromechanicsoverallpropertiesofheterogeneousmaterials |