Minimax theorems and qualitative properties of the solutions of hemivariational inequalities:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Dordrecht [u.a.]
Kluwer Acad.
1999
|
Schriftenreihe: | Nonconvex optimization and its applications
29 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVIII, 309 S. |
ISBN: | 0792354567 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV012494223 | ||
003 | DE-604 | ||
005 | 19990922 | ||
007 | t | ||
008 | 990412s1999 |||| 00||| eng d | ||
020 | |a 0792354567 |9 0-7923-5456-7 | ||
035 | |a (OCoLC)39923666 | ||
035 | |a (DE-599)BVBBV012494223 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
050 | 0 | |a QA316 | |
082 | 0 | |a 515/.64 |2 21 | |
084 | |a SK 660 |0 (DE-625)143251: |2 rvk | ||
100 | 1 | |a Motreanu, D. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Minimax theorems and qualitative properties of the solutions of hemivariational inequalities |c by D. Motreanu and P. D. Panagiotopoulos |
264 | 1 | |a Dordrecht [u.a.] |b Kluwer Acad. |c 1999 | |
300 | |a XVIII, 309 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Nonconvex optimization and its applications |v 29 | |
650 | 7 | |a Maxima |2 gtt | |
650 | 7 | |a Minima (natuurwetenschappen) |2 gtt | |
650 | 7 | |a Optimaliseren |2 gtt | |
650 | 4 | |a Hemivariational inequalities | |
650 | 4 | |a Maxima and minima | |
650 | 4 | |a Nonsmooth optimization | |
650 | 0 | 7 | |a Hemivariationsungleichung |0 (DE-588)4564212-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eigenwertproblem |0 (DE-588)4013802-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hemivariationsungleichung |0 (DE-588)4564212-6 |D s |
689 | 0 | 1 | |a Eigenwertproblem |0 (DE-588)4013802-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Panagiōtopulos, Panagiōtēs D. |d 1950-1998 |e Sonstige |0 (DE-588)128484446 |4 oth | |
830 | 0 | |a Nonconvex optimization and its applications |v 29 |w (DE-604)BV010085908 |9 29 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008481923&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-008481923 |
Datensatz im Suchindex
_version_ | 1808588829187112960 |
---|---|
adam_text |
MINIMAX THEOREMS AND QUALITATIVE PROPERTIES OF THE SOLUTIONS OF
HEMIVARIATIONAL INEQUALITIES BY D. MOTREANU DEPARTMENT OF MATHEMATICS,
UNIVERSITY OFLASI, ROMANIA AND P. D. PANAGIOTOPOULOS DEPARTMENT OF CIVIL
ENGINEERING, ARISTOTLE UNIVERSITY, THESSALONIKI, GREECE AND FACULTY OF
MATHEMATICS AND PHYSICS, RWTH AACHEN, GERMANY KLUWER ACADEMIC PUBLISHERS
DORDRECHT / BOSTON / LONDON TABLE OF CONTENTS PREFACE VII INTRODUCTION
XIII GUIDELINES FOR THE READER, ABBREVIATIONS XVII 1 ELEMENTS OF
NONSMOOTH ANALYSIS. HEMIVARIATIONAL INEQUALITIES . 1 1.1 GENERALIZED
DIRECTIONAL DERIVATIVE AND THE GENERALIZED GRADIENT OF CLARKE 1 1.2
SUBDIFFERENTIATION OF COMPOSITE MAPPINGS AND RESTRICTIONS . 9 1.3
SUBDIFFERENTIATION OF INTEGRAL FUNCTIONALS 13 1.4 HEMIVARIATIONAL
INEQUALITIES AND GENERALIZED CRITICAL POINT PROB- LEM 18 1.5 ELEMENTS OF
THE THEORY OF HEMIVARIATIONAL INEQUALITIES 24 1.6 HISTORICAL AND
BIBLIOGRAPHICAL NOTES 29 REFERENCES 31 2 NONSMOOTH CRITICAL POINT THEORY
35 2.1 NONSMOOTH DEFORMATION RESULTS 35 2.2 EQUIVARIANT VERSION OF
DEFORMATION RESULT 41 2.3 A GENERAL MINIMAX THEOREM 43 2.4 A GENERAL
CRITICAL POINT SETTING 47 2.5 APPLICATIONS TO NONSMOOTH BOUNDARY VALUE
PROBLEMS 51 REFERENCES 57 3 MINIMAX METHODS FOR
VARIATIONAL-HEMIVARIATIONAL INEQUALITIES . 59 3.1 MOTIVATION AND
INTRODUCTION 59 3.2 THE GENERAL SETTING . 64 3.3 A DEFORMATION RESULT .
'.~. : 65 3.4 MINIMAX PRINCIPLES FOR FUNCTIONALS OF TYPE (H) 73 3.5 A
VARIATIONAL - HEMIVARIATIONAL INEQUALITY 80 3.6 SEMICOERCIVE UNILATERAL
PROBLEMS AND PERIODIC SOLUTIONS . 86 X TABLE OF CONTENTS REFERENCES
91 4 EIGENVALUE PROBLEMS FOR HEMIVARIATIONAL INEQUALITIES 93 4.1
FORMULATION OF THE FIRST PROBLEM AND PREREQUISITES 93 4.2 THE EXISTENCE
OF SOLUTIONS OF THE EIGENVALUE PROBLEM IN L 2 (F2). 96 4.3 THE EXISTENCE
OF SOLUTIONS OF THE EIGENVALUE PROBLEM IN L 2+D {N) 100 4.4 EIGENVALUE
PROBLEM FOR A HEMIVARIATIONAL INEQUALITY INVOLVING A NONLINEAR COMPACT
OPERATOR 105 4.5 APPLICATIONS ILL 4.5.1 AN EIGENVALUE INCLUSION PROBLEM
ILL 4.5.2 ON THE BUCKLING OF ADHESIVELY CONNECTED VON KARMAN PLATES ILL
4.5.3 MATHEMATICAL STUDY OF THE BUCKLING PROBLEM 117 4.6 THE TIMOSHENKO
PLATE BUCKLING. THE NONCONVEX SUPERPOTENTIAL PROBLEM 122 4.7 THE
BUCKLING OF CYLINDRICAL SHELLS SUBJECTED TO ADHESIVE CONTACT CONDITIONS
124 4.8 EIGENVALUE PROBLEMS FOR HEMIVARIATIONAL INEQUALITIES. THE ME-
CHANICAL APPROACH 125 REFERENCES 131 5 MULTIPLE SOLUTIONS OF EIGENVALUE
PROBLEMS FOR HEMIVARIATIONAL INEQUAL- ITIES 133 5.1 A MINIMAX APPROACH
TO THE PROBLEM 133 5.2 MULTIPLICITY RESULTS FOR EVEN NONLINEARITIES.
PREREQUISITES . 144 5.3 MULTIPLICITY RESULTS: THE LIPSCHITZ CASE 150
5.4 MULTIPLICITY RESULTS: THE LOCALLY LIPSCHITZ CASE 154 5.5 BUCKLING OF
BEAMS ON ADHESIVE SUPPORTS 157 5.6 EIGENVALUE PROBLEMS FOR LINEAR
ELASTIC BODIES SUBJECTED TO NON- MONOTONE MULTIVALUED BOUNDARY
CONDITIONS 159 5.7 HEMIVARIATIONAL EIGENVALUE PROBLEMS FOR BOUNDARY
CONDITIONS OF FUZZY-TYPE 162 5.8 NONMONOTONE MULTIVALUED RELATIONS IN
STRUCTURAL ANALYSIS AND THE CORRESPONDING EIGENVALUE PROBLEM 164
REFERENCES 167 6 EIGENVALUE PROBLEMS FOR HEMIVARIATIONAL INEQUALITIES ON
THE SPHERE . 169 6.1 AN EXISTENCE RESULT 169 6.2 MULTIPLICITY OF
SOLUTIONS FOR A SPECIAL CASE 176 6.3 ANOTHER TYPE OF EIGENVALUE PROBLEM
ON THE SPHERE 179 6.4 APPLICATIONS 187 6.4.1 GENERALITIES 187 6.4.2
BUCKLING OF BEAMS AND PLATES WITH PRESCRIBED WEIGHT ON ADHESIVE SUPPORTS
188 TABLE OF CONTENTS XI 6.4.3 THE OPTIMUM WEIGHT FOR THE BUCKLING SHELL
PROBLEM SUBJECTED TO LOADING AND TO ADHESIVE CONTACT CONDITIONS 189 6.5
THE CASE OF THE CONSTRAINT (LU, U) = R 189 REFERENCES 195 7 RESONANT
EIGENVALUE PROBLEMS FOR HEMIVARIATIONAL INEQUALITIES . . . 197 7.1
FORMULATION OF THE RESONANT PROBLEM 197 7.2 BUCKLING OF SANDWICH BEAMS
200 7.3 EXISTENCE OF SOLUTIONS 202 7.4 LANDESMAN-LAZER CONDITIONS 209
REFERENCES 217 8 DOUBLE EIGENVALUE PROBLEMS FOR HEMIVARIATIONAL
INEQUALITIES . 219 8.1 DOUBLE EIGENVALUE PROBLEMS IN L 2 -SPACES 219
8.2 THE CASE OF ZASPACES WITH P 2 225 8.3 THE EIGENVALUE PROBLEM (P)
230 8.4 MULTIPLE SOLUTIONS FOR A DOUBLE EIGENVALUE HEMIVARIATIONAL IN-
EQUALITY 237 8.5 APPLICATIONS 246 8.5.1 MATHEMATICAL EXAMPLES 246 8.5.2
ADHESIVELY CONNECTED PLATES. BUCKLING FOR GIVEN COST OR WEIGHT . . 247
8.5.3 SANDWICH BEAMS WITH DOUBLE BUCKLING LOAD 249 8.5.4 SANDWICH
TIMOSHENKO PLATES, CYLINDRICAL SHELLS AND THEIR BUCKLING 250 8.6 A
PERTURBATION RESULT FOR A DOUBLE EIGENVALUE HEMIVARIATIONAL INEQUALITY :
250 8.6.1 THE MATHEMATICAL THEORY 250 8.6.2 APPLICATIONS: FUZZY
PERTURBATIONS 260 REFERENCES 261 9 PERIODIC AND DYNAMIC PROBLEMS 263 9.1
A HYPERBOLIC HEMIVARIATIONAL INEQUALITY 263 9.2 HOMOCLINIC SOLUTIONS : .
. . 273 9.3 PERIODIC SOLUTIONS 285 REFERENCES 307 |
any_adam_object | 1 |
author | Motreanu, D. |
author_GND | (DE-588)128484446 |
author_facet | Motreanu, D. |
author_role | aut |
author_sort | Motreanu, D. |
author_variant | d m dm |
building | Verbundindex |
bvnumber | BV012494223 |
callnumber-first | Q - Science |
callnumber-label | QA316 |
callnumber-raw | QA316 |
callnumber-search | QA316 |
callnumber-sort | QA 3316 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 660 |
ctrlnum | (OCoLC)39923666 (DE-599)BVBBV012494223 |
dewey-full | 515/.64 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.64 |
dewey-search | 515/.64 |
dewey-sort | 3515 264 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV012494223</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19990922</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">990412s1999 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0792354567</subfield><subfield code="9">0-7923-5456-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)39923666</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012494223</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA316</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.64</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 660</subfield><subfield code="0">(DE-625)143251:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Motreanu, D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Minimax theorems and qualitative properties of the solutions of hemivariational inequalities</subfield><subfield code="c">by D. Motreanu and P. D. Panagiotopoulos</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht [u.a.]</subfield><subfield code="b">Kluwer Acad.</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 309 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Nonconvex optimization and its applications</subfield><subfield code="v">29</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Maxima</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Minima (natuurwetenschappen)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optimaliseren</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hemivariational inequalities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maxima and minima</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonsmooth optimization</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hemivariationsungleichung</subfield><subfield code="0">(DE-588)4564212-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eigenwertproblem</subfield><subfield code="0">(DE-588)4013802-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hemivariationsungleichung</subfield><subfield code="0">(DE-588)4564212-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Eigenwertproblem</subfield><subfield code="0">(DE-588)4013802-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Panagiōtopulos, Panagiōtēs D.</subfield><subfield code="d">1950-1998</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)128484446</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Nonconvex optimization and its applications</subfield><subfield code="v">29</subfield><subfield code="w">(DE-604)BV010085908</subfield><subfield code="9">29</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008481923&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008481923</subfield></datafield></record></collection> |
id | DE-604.BV012494223 |
illustrated | Not Illustrated |
indexdate | 2024-08-28T00:25:15Z |
institution | BVB |
isbn | 0792354567 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008481923 |
oclc_num | 39923666 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | XVIII, 309 S. |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Kluwer Acad. |
record_format | marc |
series | Nonconvex optimization and its applications |
series2 | Nonconvex optimization and its applications |
spelling | Motreanu, D. Verfasser aut Minimax theorems and qualitative properties of the solutions of hemivariational inequalities by D. Motreanu and P. D. Panagiotopoulos Dordrecht [u.a.] Kluwer Acad. 1999 XVIII, 309 S. txt rdacontent n rdamedia nc rdacarrier Nonconvex optimization and its applications 29 Maxima gtt Minima (natuurwetenschappen) gtt Optimaliseren gtt Hemivariational inequalities Maxima and minima Nonsmooth optimization Hemivariationsungleichung (DE-588)4564212-6 gnd rswk-swf Eigenwertproblem (DE-588)4013802-1 gnd rswk-swf Hemivariationsungleichung (DE-588)4564212-6 s Eigenwertproblem (DE-588)4013802-1 s DE-604 Panagiōtopulos, Panagiōtēs D. 1950-1998 Sonstige (DE-588)128484446 oth Nonconvex optimization and its applications 29 (DE-604)BV010085908 29 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008481923&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Motreanu, D. Minimax theorems and qualitative properties of the solutions of hemivariational inequalities Nonconvex optimization and its applications Maxima gtt Minima (natuurwetenschappen) gtt Optimaliseren gtt Hemivariational inequalities Maxima and minima Nonsmooth optimization Hemivariationsungleichung (DE-588)4564212-6 gnd Eigenwertproblem (DE-588)4013802-1 gnd |
subject_GND | (DE-588)4564212-6 (DE-588)4013802-1 |
title | Minimax theorems and qualitative properties of the solutions of hemivariational inequalities |
title_auth | Minimax theorems and qualitative properties of the solutions of hemivariational inequalities |
title_exact_search | Minimax theorems and qualitative properties of the solutions of hemivariational inequalities |
title_full | Minimax theorems and qualitative properties of the solutions of hemivariational inequalities by D. Motreanu and P. D. Panagiotopoulos |
title_fullStr | Minimax theorems and qualitative properties of the solutions of hemivariational inequalities by D. Motreanu and P. D. Panagiotopoulos |
title_full_unstemmed | Minimax theorems and qualitative properties of the solutions of hemivariational inequalities by D. Motreanu and P. D. Panagiotopoulos |
title_short | Minimax theorems and qualitative properties of the solutions of hemivariational inequalities |
title_sort | minimax theorems and qualitative properties of the solutions of hemivariational inequalities |
topic | Maxima gtt Minima (natuurwetenschappen) gtt Optimaliseren gtt Hemivariational inequalities Maxima and minima Nonsmooth optimization Hemivariationsungleichung (DE-588)4564212-6 gnd Eigenwertproblem (DE-588)4013802-1 gnd |
topic_facet | Maxima Minima (natuurwetenschappen) Optimaliseren Hemivariational inequalities Maxima and minima Nonsmooth optimization Hemivariationsungleichung Eigenwertproblem |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008481923&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV010085908 |
work_keys_str_mv | AT motreanud minimaxtheoremsandqualitativepropertiesofthesolutionsofhemivariationalinequalities AT panagiotopulospanagiotesd minimaxtheoremsandqualitativepropertiesofthesolutionsofhemivariationalinequalities |