Homotopy formulas for the tangential Cauchy-Riemann complex on real hypersurfaces in C n: existence, regularity and applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Bonn
1998
|
Schriftenreihe: | Bonner mathematische Schriften
304 |
Schlagworte: | |
Beschreibung: | 74 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV012479315 | ||
003 | DE-604 | ||
005 | 20010705 | ||
007 | t | ||
008 | 990329s1998 m||| 00||| eng d | ||
035 | |a (OCoLC)40695863 | ||
035 | |a (DE-599)BVBBV012479315 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-29T |a DE-355 |a DE-12 |a DE-703 |a DE-19 |a DE-706 |a DE-20 |a DE-83 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA374 | |
082 | 0 | |a 514.24 |2 21 | |
084 | |a SI 180 |0 (DE-625)143093: |2 rvk | ||
084 | |a MAT 327d |2 stub | ||
100 | 1 | |a Ma, Lan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Homotopy formulas for the tangential Cauchy-Riemann complex on real hypersurfaces in C n |b existence, regularity and applications |c vorgelegt von Lan Ma |
264 | 1 | |a Bonn |c 1998 | |
300 | |a 74 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Bonner mathematische Schriften |v 304 | |
502 | |a Bonn, Univ., Habil.-Schr., 1998 | ||
650 | 4 | |a Cauchy-Riemann equations | |
650 | 4 | |a Homotopy theory | |
650 | 0 | 7 | |a Cauchy-Riemannscher Komplex |0 (DE-588)4199639-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperfläche |0 (DE-588)4161054-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Hyperfläche |0 (DE-588)4161054-4 |D s |
689 | 0 | 1 | |a Cauchy-Riemannscher Komplex |0 (DE-588)4199639-2 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Bonner mathematische Schriften |v 304 |w (DE-604)BV000001610 |9 304 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-008470453 |
Datensatz im Suchindex
_version_ | 1804127121744855040 |
---|---|
any_adam_object | |
author | Ma, Lan |
author_facet | Ma, Lan |
author_role | aut |
author_sort | Ma, Lan |
author_variant | l m lm |
building | Verbundindex |
bvnumber | BV012479315 |
callnumber-first | Q - Science |
callnumber-label | QA374 |
callnumber-raw | QA374 |
callnumber-search | QA374 |
callnumber-sort | QA 3374 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 180 |
classification_tum | MAT 327d |
ctrlnum | (OCoLC)40695863 (DE-599)BVBBV012479315 |
dewey-full | 514.24 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.24 |
dewey-search | 514.24 |
dewey-sort | 3514.24 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01511nam a2200421 cb4500</leader><controlfield tag="001">BV012479315</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20010705 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">990329s1998 m||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)40695863</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012479315</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA374</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.24</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 180</subfield><subfield code="0">(DE-625)143093:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 327d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ma, Lan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Homotopy formulas for the tangential Cauchy-Riemann complex on real hypersurfaces in C n</subfield><subfield code="b">existence, regularity and applications</subfield><subfield code="c">vorgelegt von Lan Ma</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Bonn</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">74 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Bonner mathematische Schriften</subfield><subfield code="v">304</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="a">Bonn, Univ., Habil.-Schr., 1998</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cauchy-Riemann equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Cauchy-Riemannscher Komplex</subfield><subfield code="0">(DE-588)4199639-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperfläche</subfield><subfield code="0">(DE-588)4161054-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hyperfläche</subfield><subfield code="0">(DE-588)4161054-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Cauchy-Riemannscher Komplex</subfield><subfield code="0">(DE-588)4199639-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Bonner mathematische Schriften</subfield><subfield code="v">304</subfield><subfield code="w">(DE-604)BV000001610</subfield><subfield code="9">304</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008470453</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV012479315 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:28:19Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008470453 |
oclc_num | 40695863 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-29T DE-355 DE-BY-UBR DE-12 DE-703 DE-19 DE-BY-UBM DE-706 DE-20 DE-83 DE-11 DE-188 |
owner_facet | DE-91 DE-BY-TUM DE-29T DE-355 DE-BY-UBR DE-12 DE-703 DE-19 DE-BY-UBM DE-706 DE-20 DE-83 DE-11 DE-188 |
physical | 74 S. |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
record_format | marc |
series | Bonner mathematische Schriften |
series2 | Bonner mathematische Schriften |
spelling | Ma, Lan Verfasser aut Homotopy formulas for the tangential Cauchy-Riemann complex on real hypersurfaces in C n existence, regularity and applications vorgelegt von Lan Ma Bonn 1998 74 S. txt rdacontent n rdamedia nc rdacarrier Bonner mathematische Schriften 304 Bonn, Univ., Habil.-Schr., 1998 Cauchy-Riemann equations Homotopy theory Cauchy-Riemannscher Komplex (DE-588)4199639-2 gnd rswk-swf Hyperfläche (DE-588)4161054-4 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Hyperfläche (DE-588)4161054-4 s Cauchy-Riemannscher Komplex (DE-588)4199639-2 s DE-604 Bonner mathematische Schriften 304 (DE-604)BV000001610 304 |
spellingShingle | Ma, Lan Homotopy formulas for the tangential Cauchy-Riemann complex on real hypersurfaces in C n existence, regularity and applications Bonner mathematische Schriften Cauchy-Riemann equations Homotopy theory Cauchy-Riemannscher Komplex (DE-588)4199639-2 gnd Hyperfläche (DE-588)4161054-4 gnd |
subject_GND | (DE-588)4199639-2 (DE-588)4161054-4 (DE-588)4113937-9 |
title | Homotopy formulas for the tangential Cauchy-Riemann complex on real hypersurfaces in C n existence, regularity and applications |
title_auth | Homotopy formulas for the tangential Cauchy-Riemann complex on real hypersurfaces in C n existence, regularity and applications |
title_exact_search | Homotopy formulas for the tangential Cauchy-Riemann complex on real hypersurfaces in C n existence, regularity and applications |
title_full | Homotopy formulas for the tangential Cauchy-Riemann complex on real hypersurfaces in C n existence, regularity and applications vorgelegt von Lan Ma |
title_fullStr | Homotopy formulas for the tangential Cauchy-Riemann complex on real hypersurfaces in C n existence, regularity and applications vorgelegt von Lan Ma |
title_full_unstemmed | Homotopy formulas for the tangential Cauchy-Riemann complex on real hypersurfaces in C n existence, regularity and applications vorgelegt von Lan Ma |
title_short | Homotopy formulas for the tangential Cauchy-Riemann complex on real hypersurfaces in C n |
title_sort | homotopy formulas for the tangential cauchy riemann complex on real hypersurfaces in c n existence regularity and applications |
title_sub | existence, regularity and applications |
topic | Cauchy-Riemann equations Homotopy theory Cauchy-Riemannscher Komplex (DE-588)4199639-2 gnd Hyperfläche (DE-588)4161054-4 gnd |
topic_facet | Cauchy-Riemann equations Homotopy theory Cauchy-Riemannscher Komplex Hyperfläche Hochschulschrift |
volume_link | (DE-604)BV000001610 |
work_keys_str_mv | AT malan homotopyformulasforthetangentialcauchyriemanncomplexonrealhypersurfacesincnexistenceregularityandapplications |