Spectral theory of canonical differential systems: method of operator identities
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Basel ; Boston ; Berlin
Birkhäuser
1999
|
Schriftenreihe: | Operator theory
107 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 193 - 200 |
Beschreibung: | VI, 202 S. |
ISBN: | 3764360577 0817660577 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV012450469 | ||
003 | DE-604 | ||
005 | 20230724 | ||
007 | t | ||
008 | 990302s1999 gw |||| 00||| eng d | ||
020 | |a 3764360577 |c (Berlin ...) Pp. : sfr 148.00 |9 3-7643-6057-7 | ||
020 | |a 0817660577 |c (Boston) Pp. |9 0-8176-6057-7 | ||
035 | |a (OCoLC)632889611 | ||
035 | |a (DE-599)BVBBV012450469 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-824 |a DE-355 |a DE-703 |a DE-188 | ||
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
100 | 1 | |a Sachnovič, Lev A. |d 1932- |e Verfasser |0 (DE-588)121081265 |4 aut | |
245 | 1 | 0 | |a Spectral theory of canonical differential systems |b method of operator identities |c Lev A. Sakhnovich |
264 | 1 | |a Basel ; Boston ; Berlin |b Birkhäuser |c 1999 | |
300 | |a VI, 202 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Operator theory |v 107 | |
500 | |a Literaturverz. S. 193 - 200 | ||
650 | 0 | 7 | |a Faktorisierung |0 (DE-588)4128927-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kanonische Form |0 (DE-588)4163203-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spektraltheorie |0 (DE-588)4116561-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialsystem |0 (DE-588)4429411-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialsystem |0 (DE-588)4429411-6 |D s |
689 | 0 | 1 | |a Kanonische Form |0 (DE-588)4163203-5 |D s |
689 | 0 | 2 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 0 | 3 | |a Faktorisierung |0 (DE-588)4128927-4 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Operator theory |v 107 |w (DE-604)BV000000970 |9 107 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008449220&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-008449220 |
Datensatz im Suchindex
_version_ | 1804127089205444608 |
---|---|
adam_text | Contents
Introduction 1
Chapter 1
Factorization of Operator valued Transfer Functions
1.1 Realization of operator valued functions 16
1.2 A factorization method 20
1.3 Factorization of rational operator valued functions 24
Chapter 2
Operator Identities and S Nodes
2.1 Elementary properties of S nodes 29
2.2 Symmetric 5 nodes 34
2.3 Inherited properties of factors 35
Chapter 3
Continual Factorization
3.1 The main continual factorization theorem 39
3.2 Bounded operator valued functions 43
Chapter 4
Spectral Problems on the Half line
4.1 Basic notions of spectral theory 49
4.2 Direct and inverse spectral problems 54
4.3 Livsic Brodskii nodes and the spectral theory
of canonical systems 61
Chapter 5
Spectral Problems on the Line
5.1 Spectral data of a canonical system 67
5.2 Spectral problems and S nodes 72
5.3 The inverse spectral problem 74
Chapter 6
Weyl Titchmarsh Functions of Periodic Canonical Systems
6.1 Multipliers and their behavior 77
6.2 Weyl Titchmarsh functions 82
6.3 Singular points of the Weyl Titchmarsh matrix function 85
Chapter 7
Division of Canonical Systems into Subclasses
7.1 An effective solution of the inverse problem 95
7.2 Two principles of dividing a class of canonical systems
into subclasses 100
V
vi Contents
Chapter 8
Uniqueness Theorems
8.1 Monodromy matrix and uniqueness theorems 107
8.2 Spectral data and uniqueness theorems 112
Chapter 9
Weyl Discs and Points
9.1 Basic notions 117
9.2 Symmetric operators and deficiency indices 122
9.3 Weyl Titchmarsh matrix functions on the line 125
9.4 Weyl Titchmarsh matrix function of a system
with shifted argument 127
Chapter 10
A Class of Canonical Systems
10.1 Asymptotic formulas 132
10.2 Spectral analysis 139
10.3 Transformed canonical systems 143
10.4 Dirac type systems 145
10.5 An inverse problem 147
10.6 On the limit Titchmarsh Weyl function 150
Chapter 11
Classical Spectral Problems
11.1 Generalized string equation (direct spectral problem) 153
11.2 Matrix Sturm Liouville equation (direct spectral problem) 159
11.3 Inverse spectral problem 163
Chapter 12
Nonlinear Integrable Equations and the Method
of the Inverse Spectral Problem
12.1 Evolution of the spectral data 167
12.2 Some classical nonlinear equations 172
12.3 On the unique solvability of the mixed problem 177
12.4 A hierarchy of nonlinear equations and asymptotic behavior
of Weyl Titchmarsh functions 180
Comments 185
References 193
Index 201
|
any_adam_object | 1 |
author | Sachnovič, Lev A. 1932- |
author_GND | (DE-588)121081265 |
author_facet | Sachnovič, Lev A. 1932- |
author_role | aut |
author_sort | Sachnovič, Lev A. 1932- |
author_variant | l a s la las |
building | Verbundindex |
bvnumber | BV012450469 |
classification_rvk | SK 620 SK 950 |
ctrlnum | (OCoLC)632889611 (DE-599)BVBBV012450469 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01901nam a2200457 cb4500</leader><controlfield tag="001">BV012450469</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230724 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">990302s1999 gw |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764360577</subfield><subfield code="c">(Berlin ...) Pp. : sfr 148.00</subfield><subfield code="9">3-7643-6057-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817660577</subfield><subfield code="c">(Boston) Pp.</subfield><subfield code="9">0-8176-6057-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)632889611</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012450469</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sachnovič, Lev A.</subfield><subfield code="d">1932-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121081265</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spectral theory of canonical differential systems</subfield><subfield code="b">method of operator identities</subfield><subfield code="c">Lev A. Sakhnovich</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel ; Boston ; Berlin</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VI, 202 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Operator theory</subfield><subfield code="v">107</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 193 - 200</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Faktorisierung</subfield><subfield code="0">(DE-588)4128927-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kanonische Form</subfield><subfield code="0">(DE-588)4163203-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialsystem</subfield><subfield code="0">(DE-588)4429411-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialsystem</subfield><subfield code="0">(DE-588)4429411-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kanonische Form</subfield><subfield code="0">(DE-588)4163203-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Faktorisierung</subfield><subfield code="0">(DE-588)4128927-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Operator theory</subfield><subfield code="v">107</subfield><subfield code="w">(DE-604)BV000000970</subfield><subfield code="9">107</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008449220&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008449220</subfield></datafield></record></collection> |
id | DE-604.BV012450469 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:27:48Z |
institution | BVB |
isbn | 3764360577 0817660577 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008449220 |
oclc_num | 632889611 |
open_access_boolean | |
owner | DE-824 DE-355 DE-BY-UBR DE-703 DE-188 |
owner_facet | DE-824 DE-355 DE-BY-UBR DE-703 DE-188 |
physical | VI, 202 S. |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Birkhäuser |
record_format | marc |
series | Operator theory |
series2 | Operator theory |
spelling | Sachnovič, Lev A. 1932- Verfasser (DE-588)121081265 aut Spectral theory of canonical differential systems method of operator identities Lev A. Sakhnovich Basel ; Boston ; Berlin Birkhäuser 1999 VI, 202 S. txt rdacontent n rdamedia nc rdacarrier Operator theory 107 Literaturverz. S. 193 - 200 Faktorisierung (DE-588)4128927-4 gnd rswk-swf Kanonische Form (DE-588)4163203-5 gnd rswk-swf Spektraltheorie (DE-588)4116561-5 gnd rswk-swf Differentialsystem (DE-588)4429411-6 gnd rswk-swf Differentialsystem (DE-588)4429411-6 s Kanonische Form (DE-588)4163203-5 s Spektraltheorie (DE-588)4116561-5 s Faktorisierung (DE-588)4128927-4 s DE-604 Operator theory 107 (DE-604)BV000000970 107 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008449220&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Sachnovič, Lev A. 1932- Spectral theory of canonical differential systems method of operator identities Operator theory Faktorisierung (DE-588)4128927-4 gnd Kanonische Form (DE-588)4163203-5 gnd Spektraltheorie (DE-588)4116561-5 gnd Differentialsystem (DE-588)4429411-6 gnd |
subject_GND | (DE-588)4128927-4 (DE-588)4163203-5 (DE-588)4116561-5 (DE-588)4429411-6 |
title | Spectral theory of canonical differential systems method of operator identities |
title_auth | Spectral theory of canonical differential systems method of operator identities |
title_exact_search | Spectral theory of canonical differential systems method of operator identities |
title_full | Spectral theory of canonical differential systems method of operator identities Lev A. Sakhnovich |
title_fullStr | Spectral theory of canonical differential systems method of operator identities Lev A. Sakhnovich |
title_full_unstemmed | Spectral theory of canonical differential systems method of operator identities Lev A. Sakhnovich |
title_short | Spectral theory of canonical differential systems |
title_sort | spectral theory of canonical differential systems method of operator identities |
title_sub | method of operator identities |
topic | Faktorisierung (DE-588)4128927-4 gnd Kanonische Form (DE-588)4163203-5 gnd Spektraltheorie (DE-588)4116561-5 gnd Differentialsystem (DE-588)4429411-6 gnd |
topic_facet | Faktorisierung Kanonische Form Spektraltheorie Differentialsystem |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008449220&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000970 |
work_keys_str_mv | AT sachnovicleva spectraltheoryofcanonicaldifferentialsystemsmethodofoperatoridentities |