Fundamentals of differential geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Springer
1999
|
Schriftenreihe: | Graduate texts in mathematics
191 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 523 - 530 |
Beschreibung: | XVII, 535 S. graph. Darst. |
ISBN: | 038798593X 9780387985930 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV012409027 | ||
003 | DE-604 | ||
005 | 20210804 | ||
007 | t | ||
008 | 990209s1999 gw d||| |||| 00||| eng d | ||
020 | |a 038798593X |9 0-387-98593-X | ||
020 | |a 9780387985930 |9 978-0-387-98593-0 | ||
035 | |a (OCoLC)246443260 | ||
035 | |a (DE-599)BVBBV012409027 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-29T |a DE-739 |a DE-384 |a DE-20 |a DE-703 |a DE-898 |a DE-355 |a DE-824 |a DE-1050 |a DE-91G |a DE-19 |a DE-634 |a DE-11 | ||
050 | 0 | |a QA641 | |
082 | 0 | |a 516.36 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a MAT 530f |2 stub | ||
084 | |a MAT 576f |2 stub | ||
100 | 1 | |a Lang, Serge |d 1927-2005 |e Verfasser |0 (DE-588)119305119 |4 aut | |
245 | 1 | 0 | |a Fundamentals of differential geometry |c Serge Lang |
264 | 1 | |a New York [u.a.] |b Springer |c 1999 | |
300 | |a XVII, 535 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Graduate texts in mathematics |v 191 | |
500 | |a Literaturverz. S. 523 - 530 | ||
650 | 4 | |a Differentialgeometrie | |
650 | 4 | |a Differentialtopologie | |
650 | 4 | |a Differenzierbare Mannigfaltigkeit | |
650 | 4 | |a Geometry, Differential | |
650 | 0 | 7 | |a Differentialtopologie |0 (DE-588)4012255-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differenzierbare Mannigfaltigkeit |0 (DE-588)4012269-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spektraltheorie |0 (DE-588)4116561-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Differentialtopologie |0 (DE-588)4012255-4 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Differenzierbare Mannigfaltigkeit |0 (DE-588)4012269-4 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 3 | |8 2\p |5 DE-604 | |
830 | 0 | |a Graduate texts in mathematics |v 191 |w (DE-604)BV000000067 |9 191 | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008418595&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-008418595 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804127043773792256 |
---|---|
adam_text | Contents Foreword.................................................................................................................... v Acknowledgments.................................................................................................... xi PARTI Genera! Differential Theory............................................................................. 1 CHAPTER I Differential Calculus................................................................................................ §1. §2. §3. §4. §5. Categories.......................................................................................................... Topological Vector Spaces............................................................................. Derivatives and Composition of Maps.......................................................... Integration and Taylor’s Formula................................................................. The Inverse Mapping Theorem...................................................................... 3 4 5 8 12 15 CHAPTER II Manifolds.................................................................................................................. 22 §1. §2. §3. §4. 22 25 33 39 Atlases, Charts, Morphisms........................................................................... Submanifolds, Immersions, Submersions...................................................... Partitions of Unity............................................................................................ Manifolds with
Boundary............................................................................... CHAPTER III Vector Bundles......................................................................................................... 43 §1. Definition, Pull Backs...................................................................................... §2. The Tangent Bundle........................................................................................ §3. Exact Sequences of Bundles............................................................................ 43 51 52 xiii
CONTENTS XIV §4. Operations on Vector Bundles......................................................................... §5. Splitting of Vector Bundles.............................................................................. 58 63 CHAPTER IV Vector Fields and Differential Equations................................................................ §1. §2. §3. §4. §5. §6. Existence Theorem for Differential Equations.............................................. Vector Fields, Curves, and Flows................................................................... Sprays............................................................................................................... The Flow of a Spray and the Exponential Map............................................ Existence of Tubular Neighborhoods............................................................ Uniqueness of Tubular Neighborhoods......................................................... 66 67 88 96 105 110 112 CHAPTER V Operations on Vector Fields and Differential Forms............................................ 116 §1. §2. §3. §4. §5. §6. §7. §8. 116 122 124 137 139 143 149 151 Vector Fields, Differential Operators, Brackets............................................ Lie Derivative................................................................................................... Exterior Derivative.......................................................................................... The Poincaré Lemma....................................................................................... Contractions and Lie
Derivative..................................................................... Vector Fields and 1-Forms Under Self Duality............................................ The Canonical 2-Form..................................................................................... Darboux’s Theorem......................................................................................... CHAPTER VI The Theorem of Frobenius..................................................................................... §1. Statement of the Theorem................................................................................ §2. Differential Equations Depending on a Parameter....................................... §3. Proof of the Theorem....................................................................................... §4. The Global Formulation.................................................................................. §5. Lie Groups and Subgroups.............................................................................. 155 155 160 161 162 165 PART II Metrics, Covariant Derivatives, and Riemannian Geometry..................... 171 CHAPTER VII Metrics...................................................................................................................... 173 §1. §2. §3. §4. §5. §6. §7. 173 177 180 184 186 189 192 Definition and Functoriality............................................................................ The Hilbert Group............................................................................................ Reduction to the Hilbert
Group..................................................................... Hilbertian Tubular Neighborhoods................................................................ The Morse-Palais Lemma.............................................................................. The Riemannian Distance................................................................................ The Canonical Spray....................................................................................... CHAPTER VIII Covariant Derivatives and Geodesics..................................................................... §1. Basic Properties................................................................................................ 196 196
CONTENTS §2. §3. §4. §5. §6. Sprays and Covariant Derivatives.................................................................. Derivative Along a Curve and Parallelism..................................................... The Metric Derivative..................................................................................... More Local Results on the Exponential Map................................................ Riemannian Geodesic Length and Completeness......................................... XV 199 204 209 215 221 CHAPTER IX Curvature.................................................................................................................. 231 §1. §2. §3. §4. §5. 231 239 246 255 263 The Riemann Tensor....................................................................................... Jacobi Lifts......................................................................................................... Application of Jacobi Lifts to Texpr.............................................................. Convexity Theorems......................................................................................... Taylor Expansions............................................................................................. CHAPTER X Jacobi Lilts and Tensorial Splitting of the Double Tangent Bundle..................... 267 §1. §2. §3. §4. §5. §6. 267 271 276 279 286 291 Convexity of Jacobi Lifts.................................................................................. Global Tubular Neighborhood of a Totally Geodesic Submanifold........... More Convexity and
Comparison Results..................................................... Splitting of the Double Tangent Bundle......................................................... Tensorial Derivative of a Curve in TX and of the Exponential Map.......... The Flow and the Tensorial Derivative......................................................... CHAPTER XI Curvature and the Variation Formula..................................................................... 294 §1. §2. §3. §4. §5. 294 304 309 315 318 The Index Form, Variations, and the Second Variation Formula.............. Growth of a Jacobi Lift.................................................................................... The Semi Parallelogram Law and Negative Curvature...................... Totally Geodesic Submanifolds....................................................................... Rauch Comparison Theorem........................................................................... CHAPTER XII An Example of Seminegative Curvature................................................................ 322 §1. Pos„(R) as a Riemannian Manifold................................................................ §2. The Metric Increasing Property of the Exponential Map............................ §3. Totally Geodesic and Symmetric Submanifolds............................................ 322 327 332 CHAPTER XIII Automorphisms and Symmetries........................................................................... 339 §1. §2. §3. §4. §5. §6. 342 347 351 354 358 365 The Tensorial Second
Derivative.................................................................... Alternative Definitions of Killing Fields......................................................... Metric Killing Fields......................................................................................... Lie Algebra Properties of Killing Fields......................................................... Symmetric Spaces.............................................................................................. Parallelism and the Riemann Tensor..............................................................
CONTENTS XVI CHAPTER XIV Immersions and Submersions................................................................................ 369 §1. §2. §3. §4. §5. §6. 369 376 383 387 390 393 The Covariant Derivative on a Submanifold................................................ The Hessian and Laplacian on a Submanifold.........;................................... The Covariant Derivative on a Riemannian Submersion........................... The Hessian and Laplacian on a Riemannian Submersion........................ The Riemann Tensor on Submanifolds......................................................... The Riemann Tensor on a Riemannian Submersion.................................. PART III Volume Forms and Integration......................................................................... 395 CHAPTER XV Volume Forms........................................................................................................... 397 §1. §2. §3. §4. §5. §6. §7. §8. 397 407 412 418 424 428 435 440 Volume Forms and the Divergence................................................................ Covariant Derivatives....................................................................................... The Jacobian Determinant of the Exponential Map.................................... The Hodge Star on Forms.............................................................................. Hodge Decomposition of Differential Forms................................................ Volume Forms in a Submersion..................................................................... Volume Forms on
Lie Groups and Homogeneous Spaces........................... Homogeneously Fibered Submersions............................................................. CHAPTER XVI Integration of Differential Forms............................................................................. 448 §1. §2. §3. §4. §5. 448 453 461 463 471 Sets of Measure 0.............................................................................................. Change of Variables Formula......................................................................... Orientation......................................................................................................... The Measure Associated with a Differential Form....................................... Homogeneous Spaces....................................................................................... CHAPTER XVII Stokes’ Theorem....................................................................................................... 475 §1. Stokes’ Theorem for a Rectangular Simplex.................................................. §2. Stokes’ Theorem on a Manifold..................................................................... §3. Stokes’ Theorem with Singularities................................................................ 475 478 482 CHAPTER XVIII Applications of Stokes’ Theorem............................................................................ 489 §1. §2. §3. §4. §5. §6. 489 496 497 501 503 507 The Maximal de Rham Cohomology........................................................... Moser’s
Theorem............................................................................................. The Divergence Theorem............................................................................... The Adjoint of d for Higher Degree Forms................................................... Cauchy’s Theorem........................................................................................... The Residue Theorem......................................................................................
CONTENTS XVÍÍ APPENDIX The Spectral Theorem............................................................................................... 511 §1. Hilbert Space................................................................................................. §2. Functionals and Operators........................................................................... §3. Hermitian Operators..................................................................................... 511 512 515 Bibliography............................................................................................................. 523 Index......................................................................................................................... 531
|
any_adam_object | 1 |
author | Lang, Serge 1927-2005 |
author_GND | (DE-588)119305119 |
author_facet | Lang, Serge 1927-2005 |
author_role | aut |
author_sort | Lang, Serge 1927-2005 |
author_variant | s l sl |
building | Verbundindex |
bvnumber | BV012409027 |
callnumber-first | Q - Science |
callnumber-label | QA641 |
callnumber-raw | QA641 |
callnumber-search | QA641 |
callnumber-sort | QA 3641 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 370 |
classification_tum | MAT 530f MAT 576f |
ctrlnum | (OCoLC)246443260 (DE-599)BVBBV012409027 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02543nam a2200613 cb4500</leader><controlfield tag="001">BV012409027</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210804 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">990209s1999 gw d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">038798593X</subfield><subfield code="9">0-387-98593-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387985930</subfield><subfield code="9">978-0-387-98593-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246443260</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012409027</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA641</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 530f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 576f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lang, Serge</subfield><subfield code="d">1927-2005</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)119305119</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fundamentals of differential geometry</subfield><subfield code="c">Serge Lang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 535 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">191</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 523 - 530</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentialgeometrie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentialtopologie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialtopologie</subfield><subfield code="0">(DE-588)4012255-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Differentialtopologie</subfield><subfield code="0">(DE-588)4012255-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">191</subfield><subfield code="w">(DE-604)BV000000067</subfield><subfield code="9">191</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008418595&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008418595</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV012409027 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:27:05Z |
institution | BVB |
isbn | 038798593X 9780387985930 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008418595 |
oclc_num | 246443260 |
open_access_boolean | |
owner | DE-29T DE-739 DE-384 DE-20 DE-703 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-824 DE-1050 DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-634 DE-11 |
owner_facet | DE-29T DE-739 DE-384 DE-20 DE-703 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-824 DE-1050 DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-634 DE-11 |
physical | XVII, 535 S. graph. Darst. |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer |
record_format | marc |
series | Graduate texts in mathematics |
series2 | Graduate texts in mathematics |
spelling | Lang, Serge 1927-2005 Verfasser (DE-588)119305119 aut Fundamentals of differential geometry Serge Lang New York [u.a.] Springer 1999 XVII, 535 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Graduate texts in mathematics 191 Literaturverz. S. 523 - 530 Differentialgeometrie Differentialtopologie Differenzierbare Mannigfaltigkeit Geometry, Differential Differentialtopologie (DE-588)4012255-4 gnd rswk-swf Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd rswk-swf Spektraltheorie (DE-588)4116561-5 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Differentialgeometrie (DE-588)4012248-7 s DE-604 Differentialtopologie (DE-588)4012255-4 s Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 s Spektraltheorie (DE-588)4116561-5 s 2\p DE-604 Graduate texts in mathematics 191 (DE-604)BV000000067 191 Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008418595&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lang, Serge 1927-2005 Fundamentals of differential geometry Graduate texts in mathematics Differentialgeometrie Differentialtopologie Differenzierbare Mannigfaltigkeit Geometry, Differential Differentialtopologie (DE-588)4012255-4 gnd Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd Spektraltheorie (DE-588)4116561-5 gnd Differentialgeometrie (DE-588)4012248-7 gnd |
subject_GND | (DE-588)4012255-4 (DE-588)4012269-4 (DE-588)4116561-5 (DE-588)4012248-7 (DE-588)4151278-9 |
title | Fundamentals of differential geometry |
title_auth | Fundamentals of differential geometry |
title_exact_search | Fundamentals of differential geometry |
title_full | Fundamentals of differential geometry Serge Lang |
title_fullStr | Fundamentals of differential geometry Serge Lang |
title_full_unstemmed | Fundamentals of differential geometry Serge Lang |
title_short | Fundamentals of differential geometry |
title_sort | fundamentals of differential geometry |
topic | Differentialgeometrie Differentialtopologie Differenzierbare Mannigfaltigkeit Geometry, Differential Differentialtopologie (DE-588)4012255-4 gnd Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd Spektraltheorie (DE-588)4116561-5 gnd Differentialgeometrie (DE-588)4012248-7 gnd |
topic_facet | Differentialgeometrie Differentialtopologie Differenzierbare Mannigfaltigkeit Geometry, Differential Spektraltheorie Einführung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008418595&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000067 |
work_keys_str_mv | AT langserge fundamentalsofdifferentialgeometry |