Complex analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Springer
1999
|
Ausgabe: | 4. ed. |
Schriftenreihe: | Graduate texts in mathematics
103 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | XIV, 485 S. Ill., graph. Darst. |
ISBN: | 0387985921 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV012409024 | ||
003 | DE-604 | ||
005 | 20070814 | ||
007 | t | ||
008 | 990209s1999 gw ad|| |||| 00||| eng d | ||
016 | 7 | |a 955571006 |2 DE-101 | |
020 | |a 0387985921 |c Pp. : DM 129.00 |9 0-387-98592-1 | ||
035 | |a (OCoLC)318418785 | ||
035 | |a (DE-599)BVBBV012409024 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-20 |a DE-703 |a DE-91G |a DE-19 |a DE-92 |a DE-739 |a DE-83 | ||
082 | 0 | |a 515.9 |b L153 |b 1999 |2 21 | |
084 | |a SK 700 |0 (DE-625)143253: |2 rvk | ||
084 | |a 30-01 |2 msc | ||
084 | |a MAT 300f |2 stub | ||
100 | 1 | |a Lang, Serge |d 1927-2005 |e Verfasser |0 (DE-588)119305119 |4 aut | |
245 | 1 | 0 | |a Complex analysis |c Serge Lang |
250 | |a 4. ed. | ||
264 | 1 | |a New York [u.a.] |b Springer |c 1999 | |
300 | |a XIV, 485 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Graduate texts in mathematics |v 103 | |
650 | 4 | |a Análisis matemático | |
650 | 4 | |a Funciones de variable compleja | |
650 | 0 | 7 | |a Funktionalanalysis |0 (DE-588)4018916-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionentheorie |0 (DE-588)4018935-1 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)4143389-0 |a Aufgabensammlung |2 gnd-content | |
689 | 0 | 0 | |a Funktionentheorie |0 (DE-588)4018935-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Funktionalanalysis |0 (DE-588)4018916-8 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
830 | 0 | |a Graduate texts in mathematics |v 103 |w (DE-604)BV000000067 |9 103 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008418594&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008418594&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-008418594 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804127043759112192 |
---|---|
adam_text | Contents
Foreword v
Prerequisites ix
PART ONE
Basic Theory 1
CHAPTER I
Complex Numbers and Functions 3
§1. Definition 3
§2. Polar Form 8
§3. Complex Valued Functions 12
§4. Limits and Compact Sets 17
Compact Sets 21
§5. Complex Differentiability 27
§6. The Cauchy-Riemann Equations 31
§7. Angles Under Holomorphic Maps 33
CHAPTER II
Power Series 37
§1. Formal Power Series 37
§2. Convergent Power Series 47
§3. Relations Between Formal and Convergent Series 60
Sums and Products 60
Quotients 64
Composition of Series 66
§4. Analytic Functions 68
§5. Differentiation of Power Series 72
xi
Xii CONTENTS
§6. The Inverse and Open Mapping Theorems 76
§7. The Local Maximum Modulus Principle 83
CHAPTER III
Cauchy s Theorem, First Part 86
§1. Holomorphic Functions on Connected Sets 86
Appendix: Connectedness 92
§2. Integrals Over Paths 94
§3. Local Primitive for a Holomorphic Function 104
§4. Another Description of the Integral Along a Path 110
§5. The Homotopy Form of Cauchy s Theorem 115
§6. Existence of Global Primitives. Definition of the Logarithm 119
§7. The Local Cauchy Formula 125
CHAPTER IV
Winding Numbers and Cauchy s Theorem 133
§1. The Winding Number 134
§2. The Global Cauchy Theorem 138
Dixon s Proof of Theorem 2.5 (Cauchy s Formula) 147
§3. Artin s Proof 149
CHAPTER V
Applications of Cauchy s Integral Formula 156
§1. Uniform Limits of Analytic Functions 156
§2. Laurent Series 161
§3. Isolated Singularities 165
Removable Singularities 165
Poles 166
Essential Singularities 168
CHAPTER VI
Calculus of Residues 173
§1. The Residue Formula 173
Residues of Differentials 184
§2. Evaluation of Definite Integrals 191
Fourier Transforms 194
Trigonometric Integrals 197
Mellin Transforms 199
CHAPTER VII
Conformal Mappings 208
§1. Schwarz Lemma 210
§2. Analytic Automorphisms of the Disc 212
§3. The Upper Half Plane 215
§4. Other Examples 220
§5. Fractional Linear Transformations 231
CONTENTS xiii
CHAPTER VIII
Harmonic Functions 241
§1. Definition 241
Application: Perpendicularity 246
Application: Flow Lines 248
§2. Examples 252
§3. Basic Properties of Harmonic Functions 259
§4. The Poisson Formula 271
The Poisson Integral as a Convolution 273
§5. Construction of Harmonic Functions 276
§6. Appendix. Differentiating Under the Integral Sign 286
PART TWO
Geometric Function Theory 291
CHAPTER IX
Schwarz Reflection 293
§1. Schwarz Reflection (by Complex Conjugation) 293
§2. Reflection Across Analytic Arcs 297
§3. Application of Schwarz Reflection 303
CHAPTER X
The Riemann Mapping Theorem 306
§1. Statement of the Theorem 306
§2. Compact Sets in Function Spaces 308
§3. Proof of the Riemann Mapping Theorem 311
§4. Behavior at the Boundary 314
CHAPTER XI
Analytic Continuation Along Curves 322
§1. Continuation Along a Curve 322
§2. The Dilogarithm 331
§3. Application to Picard s Theorem 335
PART THREE
Various Analytic Topics 337
CHAPTER XII
Applications of the Maximum Modulus Principle and Jensen s Formula 339
§1. Jensen s Formula 340
§2. The Picard-Borel Theorem 346
§3. Bounds by the Real Part, Borel-Caratheodory Theorem 354
§4. The Use of Three Circles and the Effect of Small Derivatives 356
Hermite Interpolation Formula 358
§5. Entire Functions with Rational Values 360
§6. The Phragmen-Lindelof and Hadamard Theorems 365
xiv CONTENTS
CHAPTER XIII
Entire and Meromorphic Functions 372
§1. Infinite Products 372
§2. Weierstrass Products 376
§3. Functions of Finite Order 382
§4. Meromorphic Functions, Mittag-Leffler Theorem 387
CHAPTER XIV
Elliptic Functions 391
§1. The Liouville Theorems 391
§2. The Weierstrass Function 395
§3. The Addition Theorem 400
§4. The Sigma and Zeta Functions 403
CHAPTER XV
The Gamma and Zeta Functions 408
§1. The Differentiation Lemma 409
§2. The Gamma Function 413
Weierstrass Product 413
The Gauss Multiplication Formula (Distribution Relation) 416
The (Other) Gauss Formula 418
The Mellin Transform 420
The Stirling Formula 422
Proof of Stirling s Formula 424
§3. The Lerch Formula 431
§4. Zeta Functions 433
CHAPTER XVI
The Prime Number Theorem 440
§1. Basic Analytic Properties of the Zeta Function 441
§2. The Main Lemma and its Application 446
§3. Proof of the Main Lemma 449
Appendix 453
§1. Summation by Parts and Non-Absolute Convergence 453
§2. Difference Equations 457
§3. Analytic Differential Equations 461
§4. Fixed Points of a Fractional Linear Transformation 465
§5. Cauchy s Formula for C Functions 467
§6. Cauchy s Theorem for Locally Integrable Vector Fields 472
Bibliography 479
Index 481
Contents
Foreword
..........................................
v
Prerequisites
....................................... ix
PART ONE
Basic Theory
...................................... 1
CHAPTER I
Complex Numbers and Functions
.......................... 3
§1.
Definition
........................................ 3
§2.
Polar Form
...................................... 8
§3.
Complex Valued Functions
............................ 12
§4.
Limits and Compact Sets
............................. 17
Compact Sets
.................................... 21
§5.
Complex Differentiability
.............................. 27
§6.
The Cauchy—Riemann Equations
........................ 31
§7.
Angles Under Holomorphic Maps
........................ 33
CHAPTER II
Power Series
....................................... 37
§t. Formal Power Series
................................ 37
§2.
Convergent Power Series
.............................. 47
§3.
Relations Between Formal and Convergent Series
............. 60
Sums and Products
................................ 60
Quotients
...................................... 64
Composition of Series
.............................. 66
§4.
Analytic Functions
.................................. 68
§5.
Differentiation of Power Series
.......................... 72
ХП
CONTENTS
§6.
The Inverse and Open Mapping Theorems
.................. 76
§7.
The Local Maximum Modulus Principle
................... 83
CHAPTER 111
Cauchy s Theorem, First Part
............................ 86
§1.
Holom
orphie
Functions on Connected Sets
.................. 86
Appendix: Connectedness
............................ 92
§2.
Integrals Over Paths
........,....................... 94
§3.
Local Primitive for a Holomorphic Function
................. 104
§4.
Another Description of the Integral Along a Path
............. 110
§5.
The Homotopy Form of Cauchy s Theorem
................. 115
§6.
Existence of Global Primitives. Definition of the Logarithm
....... 119
§7.
The Local Cauchy Formula
............................ 125
CHAPTER IV
Winding Numbers and Cauchy s Theorem
.................... 133
§1.
The Winding Number
................................ 134
§2.
The Global Cauchy Theorem
........................... 138
Dixon s Proof of Theorem
2-5
(Cauchy s Formula)
........... 147
§3.
Artin s Proof
...................................... 149
CHAPTER V
Applications of Cauchy s Integral Formula
................... . 156
§1.
Uniform Limits of Analytic Functions
..................... 156
§2.
Laurent Series
..................................... 161
§3.
Isolated Singularities
................................ 165
Removable Singularities
............................. 165
Poles
......................................... 166
Essential Singularities
.............................. 168
CHAPTER VI
î
Calculus of Residues
.................................. 173
§1.
The Residue Formula
................................ 173
ł
Residues of Differentials
............................. 184
§2.
Evaluation of Definite Integrals
......................... 191
Fourier Transforms
................................ 194
i Trigonometric Integrals
............................. 197
Mellin Transforms
................................ 199
CHAPTER
VII
Conformai
Mappings
.................................. 208
§1. Schwarz
Lemma
................................... 210
§2.
Analytic Automorphisms of the Disc
...................... 212
§3.
The Upper Half Plane
............................... 215
§4.
Other Examples
................................... 220
§5.
Fractional Linear Transformations
....................... 231
CONTENTS xiii
CHAPTER
VIII
,
Harmonic Functions
................................... 241
§1.
Definition
........................................ 241,
Application: Perpendicularity
.........................
246¡
Application: Flow Lines
............................. 248-
§2.
Examples
........................................
252>
§3.
Basic Properties of Harmonic Functions
.................... 259
§4.
The
Poisson
Formula
................................ 271
The
Poisson
Integral as a Convolution
.................... 273
§5.
Construction of Harmonic Functions
...................... 276
§6.
Appendix. Differentiating Under the Integral Sign
.............. 286
PART TWO
Geometric Function Theory
............................ 291
CHAPTER IX
Schwarz
Reflection
................................... 293
§1. Schwarz
Reflection (by Complex Conjugation)
................ 293
§2.
Reflection Across Analytic Arcs
........................, 297
§3.
Application of
Schwarz
Reflection
........................ 303
CHAPTER X
The Rlemann Mapping Theorem
.......................... 306
§1.
Statement of the Theorem
............................. 306
§2.
Compact Sets in Function Spaces
........................ 308
§3.
Proof of the Riemann Mapping Theorem
,.................. 311
§4.
Behavior at the Boundary
............................. 314
CHAPTER XI
Analytic Continuation Along Curves
........................ 322
§1.
Continuation Along a Curve
........................... 322
§2.
The Dilogarithm
................................... 331
§3.
Application to Picard s Theorem
......................... 335
PART THREE
Various Analytic Topics
............................... 337
CHAPTER
XII
Applications of the Maximum Modulus Principle and Jensen s Formula
339
§1.
Jensen s Formula
................................... 340
§2,
The
Picard-Borei
Theorem
............................ 346
§3.
Bounds by the Real Part,
Borel-Carathéodory
Theorem
......... 354
§4.
The Use of Three Circles and the Effect of Small Derivatives
...... 356
Hermite Interpolation Formula
........................ 358
§5.
Entire Functions with Rational Values
..................... 360
§6.
The Phragmen—
Lindelof
and
Hadamard
Theorems
............. 365
í
XIV
CONTENTS
j
і
;
ţ
CHAPTER
ХШ
Entire and Meromorphic Functions
......................... 372
§1.
Infinite Products
................................... 372
§2.
Weierstrass
Products
................................ 376
§3.
Functions of Finite Order
............................. 382
§4.
Meromorphic Functions,
Mittag-
Leffler Theorem
............. 387
CHAPTER
XIV
Elliptic Functions
..................................... 391
§1.
The Liouville Theorems
.............................. 391
§2.
The
Weierstrass
Function
............................. 395
§3.
The Addition Theorem
............................... 400
§4.
The Sigma and
Zeta
Functions
.......................... 403
CHAPTER XV
The Gamma and
Zeta
Functions
.......................... 408
§1.
The Differentiation Lemma
............................ 409
§2.
The Gamma Function
............................... 413
Weierstrass
Product
............................... 413
The Gauss Multiplication Formula (Distribution Relation)
....... 416
The (Other) Gauss Formula
.......................... 418
The Mellin Transform
.............................. 420
The Stirling Formula
.............................. 422
Proof of Stirling s Formula
........................... 424
§3.
The Lerch Formula
................................. 431
§4.
Zeta
Functions
.................................... 433
CHAPTER
XVI
The Prime Number Theorem
............................. 440
§1.
Basic Analytic Properties of the
Zeta
Function
............... 441
§2.
The Main Lemma and its Application
..................... 446
§3.
Proof of the Main Lemma
............................. 449
Appendix
.......................................... 453
§1.
Summation by Parts and Non-Absolute Convergence
........... 453
§2.
Difference Equations
................................ 457
§3.
Analytic Differential Equations
.......................... 461
§4.
Fixed Points of a Fractional Linear Transformation
............ 465
§5.
Cauchy s Formula for C00 Functions
...................... 467
§6.
Cauchy s Theorem for Locally
Integrable
Vector Fields
.......... 472
§7.
More on Cauchy-Riemann
............................. 477
Bibliography
......................................... 479
Index
.............................................. 481
|
any_adam_object | 1 |
author | Lang, Serge 1927-2005 |
author_GND | (DE-588)119305119 |
author_facet | Lang, Serge 1927-2005 |
author_role | aut |
author_sort | Lang, Serge 1927-2005 |
author_variant | s l sl |
building | Verbundindex |
bvnumber | BV012409024 |
classification_rvk | SK 700 |
classification_tum | MAT 300f |
ctrlnum | (OCoLC)318418785 (DE-599)BVBBV012409024 |
dewey-full | 515.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.9 |
dewey-search | 515.9 |
dewey-sort | 3515.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 4. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02425nam a2200541 cb4500</leader><controlfield tag="001">BV012409024</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20070814 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">990209s1999 gw ad|| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">955571006</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387985921</subfield><subfield code="c">Pp. : DM 129.00</subfield><subfield code="9">0-387-98592-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)318418785</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012409024</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.9</subfield><subfield code="b">L153</subfield><subfield code="b">1999</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 700</subfield><subfield code="0">(DE-625)143253:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 300f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lang, Serge</subfield><subfield code="d">1927-2005</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)119305119</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex analysis</subfield><subfield code="c">Serge Lang</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">4. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 485 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">103</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Análisis matemático</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Funciones de variable compleja</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)4143389-0</subfield><subfield code="a">Aufgabensammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">103</subfield><subfield code="w">(DE-604)BV000000067</subfield><subfield code="9">103</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008418594&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008418594&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008418594</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4143389-0 Aufgabensammlung gnd-content |
genre_facet | Einführung Aufgabensammlung |
id | DE-604.BV012409024 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:27:05Z |
institution | BVB |
isbn | 0387985921 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008418594 |
oclc_num | 318418785 |
open_access_boolean | |
owner | DE-20 DE-703 DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-92 DE-739 DE-83 |
owner_facet | DE-20 DE-703 DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-92 DE-739 DE-83 |
physical | XIV, 485 S. Ill., graph. Darst. |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer |
record_format | marc |
series | Graduate texts in mathematics |
series2 | Graduate texts in mathematics |
spelling | Lang, Serge 1927-2005 Verfasser (DE-588)119305119 aut Complex analysis Serge Lang 4. ed. New York [u.a.] Springer 1999 XIV, 485 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Graduate texts in mathematics 103 Análisis matemático Funciones de variable compleja Funktionalanalysis (DE-588)4018916-8 gnd rswk-swf Funktionentheorie (DE-588)4018935-1 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4143389-0 Aufgabensammlung gnd-content Funktionentheorie (DE-588)4018935-1 s DE-604 Funktionalanalysis (DE-588)4018916-8 s 3\p DE-604 Graduate texts in mathematics 103 (DE-604)BV000000067 103 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008418594&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008418594&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lang, Serge 1927-2005 Complex analysis Graduate texts in mathematics Análisis matemático Funciones de variable compleja Funktionalanalysis (DE-588)4018916-8 gnd Funktionentheorie (DE-588)4018935-1 gnd |
subject_GND | (DE-588)4018916-8 (DE-588)4018935-1 (DE-588)4151278-9 (DE-588)4143389-0 |
title | Complex analysis |
title_auth | Complex analysis |
title_exact_search | Complex analysis |
title_full | Complex analysis Serge Lang |
title_fullStr | Complex analysis Serge Lang |
title_full_unstemmed | Complex analysis Serge Lang |
title_short | Complex analysis |
title_sort | complex analysis |
topic | Análisis matemático Funciones de variable compleja Funktionalanalysis (DE-588)4018916-8 gnd Funktionentheorie (DE-588)4018935-1 gnd |
topic_facet | Análisis matemático Funciones de variable compleja Funktionalanalysis Funktionentheorie Einführung Aufgabensammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008418594&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008418594&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000067 |
work_keys_str_mv | AT langserge complexanalysis |