The first steps in seeing:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Sunderland, Mass.
Sinauer
1998
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XI, 562 S. zahlr. Ill., graph. Darst. |
ISBN: | 0878937579 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV012262474 | ||
003 | DE-604 | ||
005 | 20070511 | ||
007 | t | ||
008 | 981113s1998 ad|| |||| 00||| eng d | ||
020 | |a 0878937579 |9 0-87893-757-9 | ||
035 | |a (OCoLC)246168422 | ||
035 | |a (DE-599)BVBBV012262474 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-29 |a DE-29T |a DE-83 |a DE-703 |a DE-188 | ||
050 | 0 | |a QP475 | |
082 | 0 | |a 612.8/4 |2 21 | |
084 | |a WW 1780 |0 (DE-625)158904:13423 |2 rvk | ||
100 | 1 | |a Rodieck, Robert W. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The first steps in seeing |c R. W. Rodieck |
264 | 1 | |a Sunderland, Mass. |b Sinauer |c 1998 | |
300 | |a XI, 562 S. |b zahlr. Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 7 | |a Fisiologia animal |2 larpcal | |
650 | 7 | |a Oeil - Physiologie |2 ram | |
650 | 7 | |a Oftalmologia |2 larpcal | |
650 | 7 | |a Ogen |2 gtt | |
650 | 7 | |a Vision |2 ram | |
650 | 7 | |a Visueel systeem |2 gtt | |
650 | 7 | |a Visuele waarneming |2 gtt | |
650 | 4 | |a Eye |x Physiology | |
650 | 4 | |a Eye |x anatomy & histology | |
650 | 4 | |a Vision | |
650 | 4 | |a Vision, Ocular |x physiology | |
650 | 0 | 7 | |a Auge |0 (DE-588)4122841-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Physiologie |0 (DE-588)4045981-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sehen |0 (DE-588)4054260-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Auge |0 (DE-588)4122841-8 |D s |
689 | 0 | 1 | |a Physiologie |0 (DE-588)4045981-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Sehen |0 (DE-588)4054260-9 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008310238&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-008310238 |
Datensatz im Suchindex
_version_ | 1804126881100857344 |
---|---|
adam_text | THE FIRST STEPS IN SEEING R. W. RODIECK BISHOP PROFESSOR THE UNIVERSITY
OF WASHINGTON UNIVSI -ITSI3- IJFTD LMKIOS- BIBLIOTHEK DORNTSTADT
EIBLIOTHEK L IOFOGIO INV.-NR. SINAUER ASSOCIATES, INC. * PUBLISHERS
SUNDERLAND, MASSACHUSETTS CONTENTS PREFACE XIII PROLOGUE THE WATCH 1 , 1
THE CHASE 6 VISION IS DYNAMIC 8 EYE MOVEMENTS CATCH IMAGES AND HOLD THEM
STEADY ON THE RETINA 9 SACCADIC AND SMOOTH EYE MOVEMENTS ARE USED TO
CATCH AND HOLD IMAGES 10 THE IMAGE OF THE VISUAL WORLD IS ALWAYS MOVING
ON THE RETINA 11 IMAGE MOTION ELICITS SMOOTH PURSUIT 11 WHAT WE SEE
DOESN T MOVE WHEN WE MOVE OUR EYES 12 ORIENTATION AND TRANSITION 14 THE
NEURAL SUBSTRATE 14 ORIENTATION AND TRANSITION 16 CATCHING THE LIGHT 17
ORIENTATION AND TRANSITION 1 9 2 EYES 20 THE EYES OF ALL VERTEBRATES
SHOW A COMMON STRUCTURAL PLAN 22 THE INTERIOR OF THE EYE CAN BE VIEWED
WITH THE AID OF A SIMPLE OPTICAL DEVICE 22 SIMILARITIES AND DIFFERENCES
23 MOST EYES ARE SPECIALIZED TO VIEW EITHER A POINT, OR THE VISUAL
HORIZON, OR A MIXTURE OF BOTH 26 RETINITIS PIGMENTOSA 27 THE RETINA IS
NOURISHED ON BOTH SIDES 28 J THE LEFT BRAIN VIEWS THE RIGHT VISUAL FIELD
31 S FUNDI OF CHEETAHS AND GAZELLES 32 3 RETINAS 36 RETINAL STRUCTURE 38
THE RETINA IS LAYERED 38 THE RETINA IS A NEURAL CIRCUIT COMPOSED OF
DIFFERENT CELL CLASSES 39 THE RETINA DETECTS AND COMPARES 40 CONES
CONCENTRATE IN THE FOVEA 42 ^ VIII CONTENTS A BRIEF FUNCTIONAL WALK
THROUGH THE RETINA 43 VISUALIZING* SINGLE NEURONS ^ 44 * PHOTORECEPTORS
44 HORIZONTAL CELLS 45 BIPOLAR CELLS 50 AMACRINE CELLS 53 GANGLION CELLS
53 THE BASIC CIRCUITRY THROUGHOUT THE RETINA IS THE SAME 55 INTERLUDE
SIZE 57 NUMBERS AND UNITS 57 SCIENTIFIC NOTATION 57 SI UNITS 57 MATTERS
OF SCALE 60 SUMMARY 65 LOGARITHMIC SCALES 65 4 THE RAIN OF PHOTONS ONTO
CONES 68 WE SEE A STAR WHEN ITS PHOTONS ACTIVATE OUR NEURONS 70 HEATED
BODIES RADIATE PHOTONS OVER A RANGE OF FREQUENCIES 70 PHOTONS ARE
PARTICLES OF LIGHT 72 SOME PHOTONS ARE LOST IN PASSING THROUGH THE EYE
73 LOOKING AT SPECTRAL DENSITY CURVES 74 PHOTONS ARRIVE ONE BY ONE 77
WHY THE LENS AND MACULA CONTAIN LIGHT-ABSORBING PIGMENTS 77 THE IMAGE
OF A POINT OF LIGHT IS SPREAD OVER MANY CONES 78 THE IMAGE OF A POINT OF
LIGHT CHARACTERIZES THE OPTICAL PROPERTIES OF THE EYE 78 THE PEAK OF THE
IMAGE APPROXIMATES THE SIZE OF A SINGLE CONE 80 THE CAPTURE OF PHOTONS
BY CONES DEPENDS UPON THEIR DIRECTION AND FREQUENCY 82 AN ABSORBED
PHOTON MUST ACTIVATE A VISUAL PIGMENT MOLECULE 85 THE PRINCIPLE OF
UNIVARIANCE CAPTURES WHAT PHOTORECEPTORS RESPOND TO 86 INTERLUDE NEURONS
89 WATER MOLECULES ARE POLAR 89 CELL MEMBRANES BLOCK THE MOVEMENT OF
POLAR MOLECULES 90 SEPARATION OF CHARGE ACROSS THE CELL MEMBRANE
PRODUCES A VOLTAGE 91 CHARGE SEPARATION TENDS TO BE DISTRIBUTED
UNIFORMLY ACROSS THE CELL MEMBRANE 92 IONS CAN PASS THROUGH AQUEOUS
PORES IN THE CELL MEMBRANE 94 NEURAL COMMUNICATION DEPENDS UPON
VOLTAGE-GATED IONIC CHANNELS 95 PUMPS USE METABOLIC ENERGY TO MOVE IONS
UP ENERGY GRADIENTS 96 EXCHANGERS USE THE ENERGY GRADIENTS OF SOME IONS
TO MOVE OTHER IONS UP THEIR ENERGY GRADIENTS 96 SYNAPSES ARE SITES OF
COMMUNICATION BETWEEN NEURONS 97 CHEMICAL SYNAPSES INVOLVE THE RELEASE
AND DETECTION OF A NEUROTRANSMITTER 97 GAP JUNCTIONS PROVIDE SITES OF
INTRACELLULAR CONTINUITY BETWEEN CELLS 99 RIBBON SYNAPSES OCCUR AT SITES
OF CONTINUOUS NEUROTRANSMITTER RELEASE 100 5 A CONE PATHWAY 102 A CHANGE
IN PHOTON CAPTURE CAUSES A CHANGE IN NEUROTRANSMITTER RELEASE 104
PATHWAYS FROM CONES TO GANGLION CELLS 106 EACH CONE CONTACTS A FEW
HUNDRED PROCESSES OF BIPOLAR AND HORIZONTAL CELLS 106 HORIZONTAL CELLS
ANTAGONIZE CONES 109 THE RESPONSE OF A BIPOLAR CELL DEPENDS UPON THE
TYPES OF CONTACT IT MAKES 110 BIPOLAR CELLS ARE PRESYNAPTIC TO BOTH
AMACRINE AND GANGLION CELLS 111 AMACRINE CELLS PROVIDE FEEDBACK AND THUS
COMPLEXITY 112 GANGLION CELL DENDRITES ARE ALWAYS POSTSYNAPTIC 114 WE
SEE A STAR WHEN ITS PHOTONS ACTIVATE OUR NEURONS* CONCLUDED 115 NEURAL
MESSAGES DEPEND UPON AN INCREASE IN FIRING RATE 116 EACH TYPE OF PARASOL
CELL TILES THE RETINA 118 WE SEE POLARIS BY MEANS OF MESSAGES CONVEYED
BY ARRAYS OF PARASOL CELLS 118 THE AXONS OF PARASOL CELLS GO TO THE
MAGNOCELLULAR PORTION OF THE LGN 119 6 THE RAIN OF PHOTONS ONTO RODS 122
AWAY FROM THE FOVEA, THE RETINA IS DOMINATED BY RODS 124 VISUAL ANGLE
AND RETINAL ECCENTRICITY 125 CALCULATING THE ROD PHOTON CATCH 126 RODS
CONTACT A SINGLE TYPE OF BIPOLAR CELL 126 ROD BIPOLAR CELL AXONS MAKE
CONTACTS IN THE INNERMOST PORTION OF THE INNER SYNAPTIC LAYER 129 ALL
AMACRINE CELLS CONVEY THE ROD SIGNAL TO CONE BIPOLAR CELLS 129 VIEWING
POLARIS WITH YOUR ROD PATHWAY 132 STELLAR MAGNITUDES 133 CONTENTS IX 7
NIGHT AND DAY 134 RODS RELIABLY SIGNAL THE CAPTURE OF SINGLE PHOTONS 136
THE ADVANTAGE OF A RELIABLE RESPONSE TO A SINGLE PHOTON IS ENORMOUS 136
L DIM LIGHTS ARE NOISY 137 ESTIMATING VARIATION 140 RODS ARE NOISY 140
RODS SATURATE 143 RODS HAVE A LIMITED DYNAMIC RANGE 143 ROD
BIPOLAR_CELLS RECEIVE A COMPRESSED ROD INPUT 144 CONES ARE ADAPTED FOR
DAYLIGHT VISION 146 CONES CAN SIGNAL THE CAPTURE OF SINGLE PHOTONS, BUT
ARE NOISIER THAN RODS 146 CONES DO NOT SATURATE TO STEADY LIGHT LEVELS
147 WHY RODS AND CONES? 147 INTERLUDE PLOTTING LIGHT INTENSITY 151 THE
RANGE OF LIGHT INTENSITIES IN THE ENVIRONMENT IS ENORMOUS 152 ROD PHOTON
CATCH 154 CONE PHOTON CATCH 154 8 HOW PHOTORECEPTORS WORK 158 HOW A ROD
RESPONDS TO A SINGLE PHOTON 161 PHOTOACTIVATION 161 BIOCHEMICAL CASCADE
163 NUCLEOTIDES 164 R* ACTIVATES MANY G MOLECULES 166 CHANNEL
AMPLIFICATION RESULTS FROM MULTIPLE BINDING SITES FOR CG 168 THE EFFECT
OF R* EXTENDS OVER 20% OF THE LENGTH OF THE OUTER SEGMENT 169 THE
ELECTRICAL RESPONSE TO AN ABSORBED PHOTON IS A PHOTOCURRENT 171
ELECTROTONIC SPREAD 173 THINKING MORE PEERLY,, ABOUT CURRENT FLOW 174
SYNAPTIC DEACTIVATION 1 75 CALCIUM ENTRY 1 75 DECREASE IN GLUTAMATE
CONCENTRATION 176 SUMMARY OF THE ROD RESPONSE TO A SINGLE PHOTON 1 76
HOW RODS AND CONES RESPOND TO MANY PHOTONS 177 THE PHOTOCURRENT RESPONSE
TO A FLASH IS PREDICTABLE FROM THE SINGLE-PHOTONRESPONSE 177 S CONES ARE
SIMILAR TO RODS 178 , CONES CAN CONVEY THE ABSORPTION OF A SINGLE PHOTON
180 VOLTAGE-GATED CHANNELS SHAPE THE RESPONSE 181 THE FLASH RESPONSE
PREDICTS THE RESPONSE TO OTHER LIGHT INTENSITY CHANGES 181 HOW RODS AND
CONES RESPOND AT DIFFERENT LIGHT LEVELS 182 THE SENSITIVITY OF ROD
VISION IS MUCH LOWER THAN THAT OF INDIVIDUAL RODS 183 RODS SATURATE AT
BRIGHT LIGHT LEVELS BUT CONES DO NOT 184 PHOTORECEPTORS GENERATE
SPONTANEOUS PHOTONLIKE EVENTS 186 INTERLUDE RHODOPSINS V188 RHODOPSINS
ARE ANCIENT 190 POINT MUTATION IN ROD RHODOPSIN CAN LEAD TO RETINITIS
PIGMENTOSA 192 V 9 RETINAL ORGANIZATION 194 IS THERE A THEORY OF RETINAL
STRUCTURE AND FUNCTION? 196 NEURAL INTERACTIONS 197 ^ CHEMICAL
MESSENGERS 197 CELL COUPLING 198 DISPOSITION OF CELLS 198 * CONTINUITY
AND CONTIGUITY 199 COVERAGE 200 TILING AND TERRITORIAL DOMAINS 201 THE
NASAL QUADRANT OF THE RETINA HAS A HIGHER DENSITY OF CELLS 203
DIFFERENTIAL RETINAL GROWTH AND CELL BIRTH DATES SHAPE SPATIAL DENSITY
204 FORMATION OF THE FOVEA PRODUCES RADIAL DISPLACEMENT IN CELL
CONNECTIONS 206 THE INNER SYNAPTIC LAYER SHOWS DIFFERENT FORMS OF
STRATIFICATION 208 SYNAPSES BETWEEN RETINAL CELLS MAY FOLLOW SIMPLE
RULES 208 - 10 PHOTORECEPTOR ATTRIBUTES 210 PHOTORECEPTOR INNER SEGMENTS
CONTAIN THE METABOLIC MACHINERY 212 PHOTORECEPTOR OUTER SEGMENTS ARE
CONTINUALLY RENEWED 212 PHOTORECEPTORS CONTAIN A CIRCADIAN CLOCK 214
FRUIT FLY CLOCKS 215 S CONES DIFFER FROM M AND L CONES IN A NUMBER OF
WAYS 216 MOST MAMMALS ARE DICHROMATS 217 TRIE GENES FOR M AND L CONE
RHODOPSINS LIE TOGETHER ON THE X CHROMOSOME 219 THE DIFFERENCE BETWEEN M
AND L CONES IS RECENT 221 IN SOME NEW WORLD MONKEYS ONLY FEMALES ARE
TRICHROMATS 222 CONTENTS 11 CELL TYPES 224 CELL TYPES CAN BE
DISTINGUISHED BY THE LACK OF INTERMEDIATE * FORMS 226 1 ARTIFICIAL CELL
TYPES 230 HORIZONTAL CELLS 231 BIPOLAR CELLS 235 MIDGET BIPOLAR CELLS
236 S CONE BIPOLAR CELLS 239 DIFFUSE CONE BIPOLAR CELLS 241 GIANT
BIPOLAR CELLS 242 AMACRINE CELLS 242 STARBURST AMACRINE CELLS 243
DOPAMINERGIC AMACRINE CELLS 247 A1 AMACRINE CELLS 252 GANGLION CELLS 255
MIDGET AND PARASOL GANGLION CELLS DOMINATE THE PRIMATE RETINA 256 MIDGET
GANGLION CELLS 257 CELLS SIMILAR TO MIDGET AND PARASOL GANGLION CELLS
ARE FOUND IN OTHER SPECIES 258 PARASOL GANGLION CELLS 260 PARASOL
GANGLION CELLS ARE COUPLED TO TWO TYPES OF AMACRINE CELLS 261 SMALL
BISTRATIFIED GANGLION CELLS COMPARE S CONES WITH M AND L CONES 263
BIPLEXIFORM GANGLION CELLS RECEIVE DIRECTLY FROM RODS 264 12 INFORMING
THE BRAIN 266 BRAIN EVOLUTION GUIDES RETINAL EVOLUTION 268 GANGLION CELL
AXONS TERMINATE IN MANY DIFFERENT SITES IN THE BRAIN 268 GANGLION CELL
TYPES AND THEIR CENTRAL PROJECTIONS ARE FUNDAMENTAL 268 SUPRACHIASMATIC
NUCLEUS 270 IDENTIFICATION OF GANGLION CELL DESTINATIONS BY MEANS OF
RETROGRADE TRANSPORT 271 ACCESSORY OPTIC SYSTEM 271 SUPERIOR COLLICULUS
273 PRETECTUM 278 PREGENICULATE 279 PREGENICULATE HOMOLOGS 280 LATERAL
GENICULATE NUCLEUS 280 THE LATERAL GENICULATE NUCLEUS IS COMPOSED OF
TWELVE DISTINCT SUBLAYERS 281 , VIEWING DIFFERENT PORTIONS OF YOUR
VISUAL FIELD 281 THE STRIATE CORTEX CONTAINS A RETINOTOPIC MAP OF THE
VISUAL FIELD 283 THE SIGNALS FROM THE^TWO EYES ARE SEGREGATED INTO -»
OCULAR DOMINANCE BANDS 284 THE STRIATE CORTEX IS VERTICALLY LAYERED 285
MESSAGES FROM DIFFERENT GANGLION CELL TYPES GO TO DIFFERENT PORTIONS OF
THE STRIATE CORTEX 286 13 LOOKING 292 WHAT DOES THE VISUAL SYSTEM NEED?
294 THE VISUAL SYSTEM NEEDS TIME 294 THE VISUAL SYSTEM NEEDS RETINAL
INFORMATION TO STABILIZE THE IMAGE 295 THE VISUAL SYSTEM NEEDS TO MAP
THE IMAGE TO THE EXTERNAL WORLD 295 THE GEOMETRY OF GAZE 297 HEAD
MOVEMENTS COME FIRST 297 EYE MOVEMENTS DEPEND UPON VIEWING DISTANCE 298
HOW THE EYES ARE MOVED 299 SIX MUSCLES TURN THE EYE 299 EYE MUSCLE PAIRS
ARE RECIPROCALLY INNERVATED 299 RABBIT VISION 301 EYE ORIENTATION IS
ALIGNED WITH THE VISUAL HORIZON 302 THE VESTIBULAR APPARATUS PROVIDES
INFORMATION ABOUT HEAD POSITION AND MOTION 303 LIVING WITHOUT A
BALANCING MECHANISM 306 SACCADES 306 SACCADES ARE TYPICALLY SMALL 308
SACCADES HAVE LIMITED POSITIONAL ACCURACY 309 INTERSACCADIC INTERVALS
ARE OFTEN BRIEF 309 LARGE CHANGES IN GAZE COMBINE EYE AND HEAD MOVEMENTS
31 1 MOVEMENTS OF THE HEAD, EYES, AND IMAGE 311 THE HEAD IS IN CONSTANT
MOTION 311 THE RETINAL IMAGE IS IN CONSTANT MOTION 314 SMOOTH EYE
MOVEMENTS TRACK STATIONARY TARGETS 317 STABILIZED IMAGES DISAPPEAR 318
RETINAL CIRCUITRY ASSISTS EYE MOVEMENTS 318 SOME RETINAL GANGLION CELL
TYPES ARE SPECIALIZED TO DETECT IMAGE MOTION 319 RABBIT ON-OFF
DIRECTION-SELECTIVE CELLS ARE ALIGNED WITH THE EYE MUSCLES 319 RABBIT
ON-DIRECTION-SELECTIVE CELLS ARE ALIGNED WITH THE SEMICIRCULAR CANALS
322 I. 1 CONTENTS XI 14 SEEING 326 EXERCISES IN SEEING 328 WARM-UP
EXERCISE: THE EXTENT OF THE VISUAL WORLD 328 EXERCISE: SEEING OUT OF THE
CORNER OF YOUR EYE 329 ^ MINIMUM ANGULAR RESOLUTION 331 MIDGET AND
PARASOL GANGLION CELLS 333 CENTER-SURROUND RECEPTIVE FIELD ORGANIZATION
333 TRANSIENT AND MAINTAINED RESPONSE COMPONENTS 339 ANTAGONISTIC AND
SUPPRESSIVE SURROUNDS 340 THE CHESHIRE CAT 341 MIDGET AND PARASOL CELL
RESPONSES TO MORE COMPLEX STIMULI ARE PREDICTABLE 342 SUMMING CONE
INPUTS 344 COMPARING CONE INPUTS 345 COLOR AND LANGUAGE 341 SEEING WITH
OUR VISUAL PATHWAYS 356 NEURAL SNAPSHOTS 356 AS DUSK APPROACHES, THE
SILENCING OF MIDGETS GIVES LUSTER TO THE WORLD 357 PARASOL CELLS ARE
IMPORTANT FOR PERCEIVING FORM AND MOVEMENT 358 EPILOGUE IGNORANCE 361 WE
DO NOT KNOW HOW GANGLION CELLS RESPOND UNDER NATURAL CONDITIONS 362 WE
DO NOT KNOW HOW GANGLION CELL ACTION POTENTIALS ARE USED 363 WE DO NOT
KNOW HOW CORTICAL ACTION POTENTIALS ARE USED 364 WE DO NOT KNOW HOW THE
STRIATE CORTEX DEALS WITH IMAGE MOVEMENT 365 TOPICS 367 ANGLES 369
BIOCHEMICAL CASCADE 371 BLACKBODY RADIATION 401 CG-GATED CHANNELS 405
CONE INPUT SPACE 417 EXPONENTIALS 439 LIGHT ABSORPTION 443 OPTIMAL
COLORS 447 PHOTOMETRY 453 PHOTON CATCH RATE 471 POISSON DISTRIBUTION 485
RADIOMETRY ,,499 VISUAL PIGMENT REGENERATION 509 WAVELENGTH AND ENERGY
513 NOTES 523 APPENDICES 542 A: SI UNITS 542 B: STANDARD OBSERVER 544
REFERENCES 547 INDEX 557 X
|
any_adam_object | 1 |
author | Rodieck, Robert W. |
author_facet | Rodieck, Robert W. |
author_role | aut |
author_sort | Rodieck, Robert W. |
author_variant | r w r rw rwr |
building | Verbundindex |
bvnumber | BV012262474 |
callnumber-first | Q - Science |
callnumber-label | QP475 |
callnumber-raw | QP475 |
callnumber-search | QP475 |
callnumber-sort | QP 3475 |
callnumber-subject | QP - Physiology |
classification_rvk | WW 1780 |
ctrlnum | (OCoLC)246168422 (DE-599)BVBBV012262474 |
dewey-full | 612.8/4 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 612 - Human physiology |
dewey-raw | 612.8/4 |
dewey-search | 612.8/4 |
dewey-sort | 3612.8 14 |
dewey-tens | 610 - Medicine and health |
discipline | Biologie Medizin |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01860nam a2200529 c 4500</leader><controlfield tag="001">BV012262474</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20070511 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">981113s1998 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0878937579</subfield><subfield code="9">0-87893-757-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246168422</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012262474</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QP475</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">612.8/4</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WW 1780</subfield><subfield code="0">(DE-625)158904:13423</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rodieck, Robert W.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The first steps in seeing</subfield><subfield code="c">R. W. Rodieck</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Sunderland, Mass.</subfield><subfield code="b">Sinauer</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 562 S.</subfield><subfield code="b">zahlr. Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fisiologia animal</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Oeil - Physiologie</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Oftalmologia</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ogen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Vision</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Visueel systeem</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Visuele waarneming</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eye</subfield><subfield code="x">Physiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eye</subfield><subfield code="x">anatomy & histology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vision, Ocular</subfield><subfield code="x">physiology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Auge</subfield><subfield code="0">(DE-588)4122841-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physiologie</subfield><subfield code="0">(DE-588)4045981-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sehen</subfield><subfield code="0">(DE-588)4054260-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Auge</subfield><subfield code="0">(DE-588)4122841-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Physiologie</subfield><subfield code="0">(DE-588)4045981-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Sehen</subfield><subfield code="0">(DE-588)4054260-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008310238&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008310238</subfield></datafield></record></collection> |
id | DE-604.BV012262474 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:24:29Z |
institution | BVB |
isbn | 0878937579 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008310238 |
oclc_num | 246168422 |
open_access_boolean | |
owner | DE-20 DE-29 DE-29T DE-83 DE-703 DE-188 |
owner_facet | DE-20 DE-29 DE-29T DE-83 DE-703 DE-188 |
physical | XI, 562 S. zahlr. Ill., graph. Darst. |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Sinauer |
record_format | marc |
spelling | Rodieck, Robert W. Verfasser aut The first steps in seeing R. W. Rodieck Sunderland, Mass. Sinauer 1998 XI, 562 S. zahlr. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Fisiologia animal larpcal Oeil - Physiologie ram Oftalmologia larpcal Ogen gtt Vision ram Visueel systeem gtt Visuele waarneming gtt Eye Physiology Eye anatomy & histology Vision Vision, Ocular physiology Auge (DE-588)4122841-8 gnd rswk-swf Physiologie (DE-588)4045981-0 gnd rswk-swf Sehen (DE-588)4054260-9 gnd rswk-swf Auge (DE-588)4122841-8 s Physiologie (DE-588)4045981-0 s DE-604 Sehen (DE-588)4054260-9 s HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008310238&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Rodieck, Robert W. The first steps in seeing Fisiologia animal larpcal Oeil - Physiologie ram Oftalmologia larpcal Ogen gtt Vision ram Visueel systeem gtt Visuele waarneming gtt Eye Physiology Eye anatomy & histology Vision Vision, Ocular physiology Auge (DE-588)4122841-8 gnd Physiologie (DE-588)4045981-0 gnd Sehen (DE-588)4054260-9 gnd |
subject_GND | (DE-588)4122841-8 (DE-588)4045981-0 (DE-588)4054260-9 |
title | The first steps in seeing |
title_auth | The first steps in seeing |
title_exact_search | The first steps in seeing |
title_full | The first steps in seeing R. W. Rodieck |
title_fullStr | The first steps in seeing R. W. Rodieck |
title_full_unstemmed | The first steps in seeing R. W. Rodieck |
title_short | The first steps in seeing |
title_sort | the first steps in seeing |
topic | Fisiologia animal larpcal Oeil - Physiologie ram Oftalmologia larpcal Ogen gtt Vision ram Visueel systeem gtt Visuele waarneming gtt Eye Physiology Eye anatomy & histology Vision Vision, Ocular physiology Auge (DE-588)4122841-8 gnd Physiologie (DE-588)4045981-0 gnd Sehen (DE-588)4054260-9 gnd |
topic_facet | Fisiologia animal Oeil - Physiologie Oftalmologia Ogen Vision Visueel systeem Visuele waarneming Eye Physiology Eye anatomy & histology Vision, Ocular physiology Auge Physiologie Sehen |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008310238&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT rodieckrobertw thefirststepsinseeing |