Divisibility properties of functions counting subgroups of finite index in virtually free groups:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
1998
|
Schlagworte: | |
Beschreibung: | Bielefeld, Univ., Diss., 1998 |
Beschreibung: | 143 S. graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV012260010 | ||
003 | DE-604 | ||
007 | t | ||
008 | 981112s1998 d||| m||| 00||| eng d | ||
035 | |a (OCoLC)246389323 | ||
035 | |a (DE-599)BVBBV012260010 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-29T |a DE-83 |a DE-11 | ||
084 | |a SI 990 |0 (DE-625)143213: |2 rvk | ||
100 | 1 | |a Meyer, Anja Gabriele |e Verfasser |4 aut | |
245 | 1 | 0 | |a Divisibility properties of functions counting subgroups of finite index in virtually free groups |c vorgelegt von Anja Gabriele Meyer |
264 | 1 | |c 1998 | |
300 | |a 143 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Bielefeld, Univ., Diss., 1998 | ||
650 | 4 | |a Virtuell freie Gruppe - Untergruppe - Arithmetische Funktion | |
650 | 0 | 7 | |a Arithmetische Funktion |0 (DE-588)4368429-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Untergruppe |0 (DE-588)4224972-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Virtuell freie Gruppe |0 (DE-588)4294676-1 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Virtuell freie Gruppe |0 (DE-588)4294676-1 |D s |
689 | 0 | 1 | |a Untergruppe |0 (DE-588)4224972-7 |D s |
689 | 0 | 2 | |a Arithmetische Funktion |0 (DE-588)4368429-4 |D s |
689 | 0 | |5 DE-604 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-008308155 |
Datensatz im Suchindex
_version_ | 1811034367821086720 |
---|---|
adam_text | |
any_adam_object | |
author | Meyer, Anja Gabriele |
author_facet | Meyer, Anja Gabriele |
author_role | aut |
author_sort | Meyer, Anja Gabriele |
author_variant | a g m ag agm |
building | Verbundindex |
bvnumber | BV012260010 |
classification_rvk | SI 990 |
ctrlnum | (OCoLC)246389323 (DE-599)BVBBV012260010 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV012260010</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">981112s1998 d||| m||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246389323</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012260010</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 990</subfield><subfield code="0">(DE-625)143213:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Meyer, Anja Gabriele</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Divisibility properties of functions counting subgroups of finite index in virtually free groups</subfield><subfield code="c">vorgelegt von Anja Gabriele Meyer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">143 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Bielefeld, Univ., Diss., 1998</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Virtuell freie Gruppe - Untergruppe - Arithmetische Funktion</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Arithmetische Funktion</subfield><subfield code="0">(DE-588)4368429-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Untergruppe</subfield><subfield code="0">(DE-588)4224972-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Virtuell freie Gruppe</subfield><subfield code="0">(DE-588)4294676-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Virtuell freie Gruppe</subfield><subfield code="0">(DE-588)4294676-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Untergruppe</subfield><subfield code="0">(DE-588)4224972-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Arithmetische Funktion</subfield><subfield code="0">(DE-588)4368429-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008308155</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV012260010 |
illustrated | Illustrated |
indexdate | 2024-09-24T00:16:02Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008308155 |
oclc_num | 246389323 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-29T DE-83 DE-11 |
owner_facet | DE-355 DE-BY-UBR DE-29T DE-83 DE-11 |
physical | 143 S. graph. Darst. |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
record_format | marc |
spelling | Meyer, Anja Gabriele Verfasser aut Divisibility properties of functions counting subgroups of finite index in virtually free groups vorgelegt von Anja Gabriele Meyer 1998 143 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Bielefeld, Univ., Diss., 1998 Virtuell freie Gruppe - Untergruppe - Arithmetische Funktion Arithmetische Funktion (DE-588)4368429-4 gnd rswk-swf Untergruppe (DE-588)4224972-7 gnd rswk-swf Virtuell freie Gruppe (DE-588)4294676-1 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Virtuell freie Gruppe (DE-588)4294676-1 s Untergruppe (DE-588)4224972-7 s Arithmetische Funktion (DE-588)4368429-4 s DE-604 |
spellingShingle | Meyer, Anja Gabriele Divisibility properties of functions counting subgroups of finite index in virtually free groups Virtuell freie Gruppe - Untergruppe - Arithmetische Funktion Arithmetische Funktion (DE-588)4368429-4 gnd Untergruppe (DE-588)4224972-7 gnd Virtuell freie Gruppe (DE-588)4294676-1 gnd |
subject_GND | (DE-588)4368429-4 (DE-588)4224972-7 (DE-588)4294676-1 (DE-588)4113937-9 |
title | Divisibility properties of functions counting subgroups of finite index in virtually free groups |
title_auth | Divisibility properties of functions counting subgroups of finite index in virtually free groups |
title_exact_search | Divisibility properties of functions counting subgroups of finite index in virtually free groups |
title_full | Divisibility properties of functions counting subgroups of finite index in virtually free groups vorgelegt von Anja Gabriele Meyer |
title_fullStr | Divisibility properties of functions counting subgroups of finite index in virtually free groups vorgelegt von Anja Gabriele Meyer |
title_full_unstemmed | Divisibility properties of functions counting subgroups of finite index in virtually free groups vorgelegt von Anja Gabriele Meyer |
title_short | Divisibility properties of functions counting subgroups of finite index in virtually free groups |
title_sort | divisibility properties of functions counting subgroups of finite index in virtually free groups |
topic | Virtuell freie Gruppe - Untergruppe - Arithmetische Funktion Arithmetische Funktion (DE-588)4368429-4 gnd Untergruppe (DE-588)4224972-7 gnd Virtuell freie Gruppe (DE-588)4294676-1 gnd |
topic_facet | Virtuell freie Gruppe - Untergruppe - Arithmetische Funktion Arithmetische Funktion Untergruppe Virtuell freie Gruppe Hochschulschrift |
work_keys_str_mv | AT meyeranjagabriele divisibilitypropertiesoffunctionscountingsubgroupsoffiniteindexinvirtuallyfreegroups |