Neural networks and machine learning:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Berlin ; Heidelberg ; New York ; Barcelona ; Budapest ; Hong Kon
Springer
1998
|
Schriftenreihe: | NATO: [Nato ASI series / F]
168 |
Schlagworte: | |
Beschreibung: | XII, 353 S. graph. Darst. |
ISBN: | 354064928X |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV012163152 | ||
003 | DE-604 | ||
005 | 20150311 | ||
007 | t| | ||
008 | 980915s1998 gw d||| |||| 10||| ger d | ||
020 | |a 354064928X |c : DM 119.00 |9 3-540-64928-X | ||
035 | |a (OCoLC)39906127 | ||
035 | |a (DE-599)BVBBV012163152 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-739 |a DE-12 |a DE-91 |a DE-29T |a DE-526 |a DE-83 | ||
050 | 0 | |a QA76.87 | |
082 | 0 | |a 006.3/2 |2 21 | |
084 | |a ST 301 |0 (DE-625)143651: |2 rvk | ||
084 | |a DAT 708f |2 stub | ||
084 | |a DAT 717f |2 stub | ||
245 | 1 | 0 | |a Neural networks and machine learning |c ed. by Christopher M. Bishop |
264 | 1 | |a Berlin ; Heidelberg ; New York ; Barcelona ; Budapest ; Hong Kon |b Springer |c 1998 | |
300 | |a XII, 353 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a NATO: [Nato ASI series / F] |v 168 | |
650 | 4 | |a Apprentissage automatique | |
650 | 7 | |a Apprentissage automatique - Congrès |2 ram | |
650 | 4 | |a Réseaux neuronaux (Informatique) | |
650 | 7 | |a Réseaux neuronaux (informatique) - Congrès |2 ram | |
650 | 7 | |a apprentissage machine |2 inriac | |
650 | 7 | |a classification |2 inriac | |
650 | 7 | |a covariance |2 inriac | |
650 | 7 | |a intelligence artificielle |2 inriac | |
650 | 7 | |a méthode statistique |2 inriac | |
650 | 7 | |a processus gaussien |2 inriac | |
650 | 7 | |a régression |2 inriac | |
650 | 7 | |a réseau neuronal |2 inriac | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Neural networks (Computer science) | |
650 | 0 | 7 | |a Mathematische Lerntheorie |0 (DE-588)4169103-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 1997 |z Cambridge |2 gnd-content | |
689 | 0 | 0 | |a Mathematische Lerntheorie |0 (DE-588)4169103-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 2 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 2 | |5 DE-604 | |
700 | 1 | |a Bishop, Christopher M. |d 1959- |0 (DE-588)120454165 |4 edt | |
810 | 2 | |a F] |t NATO: [Nato ASI series |v 168 |w (DE-604)BV000013052 |9 168 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-008239543 |
Datensatz im Suchindex
_version_ | 1820882531000516608 |
---|---|
adam_text | |
any_adam_object | |
author2 | Bishop, Christopher M. 1959- |
author2_role | edt |
author2_variant | c m b cm cmb |
author_GND | (DE-588)120454165 |
author_facet | Bishop, Christopher M. 1959- |
building | Verbundindex |
bvnumber | BV012163152 |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.87 |
callnumber-search | QA76.87 |
callnumber-sort | QA 276.87 |
callnumber-subject | QA - Mathematics |
classification_rvk | ST 301 |
classification_tum | DAT 708f DAT 717f |
ctrlnum | (OCoLC)39906127 (DE-599)BVBBV012163152 |
dewey-full | 006.3/2 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/2 |
dewey-search | 006.3/2 |
dewey-sort | 16.3 12 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV012163152</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150311</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">980915s1998 gw d||| |||| 10||| ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">354064928X</subfield><subfield code="c">: DM 119.00</subfield><subfield code="9">3-540-64928-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)39906127</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012163152</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.87</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/2</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 708f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 717f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Neural networks and machine learning</subfield><subfield code="c">ed. by Christopher M. Bishop</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg ; New York ; Barcelona ; Budapest ; Hong Kon</subfield><subfield code="b">Springer</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 353 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">NATO: [Nato ASI series / F]</subfield><subfield code="v">168</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Apprentissage automatique - Congrès</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Réseaux neuronaux (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Réseaux neuronaux (informatique) - Congrès</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">apprentissage machine</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">classification</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">covariance</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">intelligence artificielle</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">méthode statistique</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">processus gaussien</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">régression</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">réseau neuronal</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Lerntheorie</subfield><subfield code="0">(DE-588)4169103-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1997</subfield><subfield code="z">Cambridge</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematische Lerntheorie</subfield><subfield code="0">(DE-588)4169103-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bishop, Christopher M.</subfield><subfield code="d">1959-</subfield><subfield code="0">(DE-588)120454165</subfield><subfield code="4">edt</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">F]</subfield><subfield code="t">NATO: [Nato ASI series</subfield><subfield code="v">168</subfield><subfield code="w">(DE-604)BV000013052</subfield><subfield code="9">168</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008239543</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 1997 Cambridge gnd-content |
genre_facet | Konferenzschrift 1997 Cambridge |
id | DE-604.BV012163152 |
illustrated | Illustrated |
indexdate | 2025-01-10T17:08:22Z |
institution | BVB |
isbn | 354064928X |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008239543 |
oclc_num | 39906127 |
open_access_boolean | |
owner | DE-739 DE-12 DE-91 DE-BY-TUM DE-29T DE-526 DE-83 |
owner_facet | DE-739 DE-12 DE-91 DE-BY-TUM DE-29T DE-526 DE-83 |
physical | XII, 353 S. graph. Darst. |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer |
record_format | marc |
series2 | NATO: [Nato ASI series / F] |
spelling | Neural networks and machine learning ed. by Christopher M. Bishop Berlin ; Heidelberg ; New York ; Barcelona ; Budapest ; Hong Kon Springer 1998 XII, 353 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier NATO: [Nato ASI series / F] 168 Apprentissage automatique Apprentissage automatique - Congrès ram Réseaux neuronaux (Informatique) Réseaux neuronaux (informatique) - Congrès ram apprentissage machine inriac classification inriac covariance inriac intelligence artificielle inriac méthode statistique inriac processus gaussien inriac régression inriac réseau neuronal inriac Machine learning Neural networks (Computer science) Mathematische Lerntheorie (DE-588)4169103-9 gnd rswk-swf Neuronales Netz (DE-588)4226127-2 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf (DE-588)1071861417 Konferenzschrift 1997 Cambridge gnd-content Mathematische Lerntheorie (DE-588)4169103-9 s DE-604 Neuronales Netz (DE-588)4226127-2 s Maschinelles Lernen (DE-588)4193754-5 s Bishop, Christopher M. 1959- (DE-588)120454165 edt F] NATO: [Nato ASI series 168 (DE-604)BV000013052 168 |
spellingShingle | Neural networks and machine learning Apprentissage automatique Apprentissage automatique - Congrès ram Réseaux neuronaux (Informatique) Réseaux neuronaux (informatique) - Congrès ram apprentissage machine inriac classification inriac covariance inriac intelligence artificielle inriac méthode statistique inriac processus gaussien inriac régression inriac réseau neuronal inriac Machine learning Neural networks (Computer science) Mathematische Lerntheorie (DE-588)4169103-9 gnd Neuronales Netz (DE-588)4226127-2 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4169103-9 (DE-588)4226127-2 (DE-588)4193754-5 (DE-588)1071861417 |
title | Neural networks and machine learning |
title_auth | Neural networks and machine learning |
title_exact_search | Neural networks and machine learning |
title_full | Neural networks and machine learning ed. by Christopher M. Bishop |
title_fullStr | Neural networks and machine learning ed. by Christopher M. Bishop |
title_full_unstemmed | Neural networks and machine learning ed. by Christopher M. Bishop |
title_short | Neural networks and machine learning |
title_sort | neural networks and machine learning |
topic | Apprentissage automatique Apprentissage automatique - Congrès ram Réseaux neuronaux (Informatique) Réseaux neuronaux (informatique) - Congrès ram apprentissage machine inriac classification inriac covariance inriac intelligence artificielle inriac méthode statistique inriac processus gaussien inriac régression inriac réseau neuronal inriac Machine learning Neural networks (Computer science) Mathematische Lerntheorie (DE-588)4169103-9 gnd Neuronales Netz (DE-588)4226127-2 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Apprentissage automatique Apprentissage automatique - Congrès Réseaux neuronaux (Informatique) Réseaux neuronaux (informatique) - Congrès apprentissage machine classification covariance intelligence artificielle méthode statistique processus gaussien régression réseau neuronal Machine learning Neural networks (Computer science) Mathematische Lerntheorie Neuronales Netz Maschinelles Lernen Konferenzschrift 1997 Cambridge |
volume_link | (DE-604)BV000013052 |
work_keys_str_mv | AT bishopchristopherm neuralnetworksandmachinelearning |