Linear algebra:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
New York [u.a.]
Springer
1998
|
Ausgabe: | 3. ed. |
Schriftenreihe: | Undergraduate texts in mathematics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XII, 452 S. graph. Darst. |
ISBN: | 0387984550 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV012097903 | ||
003 | DE-604 | ||
005 | 20020816 | ||
007 | t | ||
008 | 980728s1998 gw d||| |||| 00||| ger d | ||
016 | 7 | |a 954079621 |2 DE-101 | |
020 | |a 0387984550 |c Pp. : DM 98.00 |9 0-387-98455-0 | ||
035 | |a (OCoLC)845055308 | ||
035 | |a (DE-599)BVBBV012097903 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-20 |a DE-703 |a DE-824 |a DE-898 |a DE-83 |a DE-11 | ||
082 | 0 | |a 512.5 | |
084 | |a SK 220 |0 (DE-625)143224: |2 rvk | ||
100 | 1 | |a Smith, Larry |e Verfasser |4 aut | |
245 | 1 | 0 | |a Linear algebra |c Larry Smith |
250 | |a 3. ed. | ||
264 | 1 | |a New York [u.a.] |b Springer |c 1998 | |
300 | |a XII, 452 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Undergraduate texts in mathematics | |
650 | 0 | 7 | |a Eigenwertproblem |0 (DE-588)4013802-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Matrizengleichung |0 (DE-588)4169125-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a ALGOL |0 (DE-588)4001182-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerische Mathematik |0 (DE-588)4042805-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare Algebra |0 (DE-588)4035811-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 0 | 1 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 0 | 2 | |a ALGOL |0 (DE-588)4001182-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Matrizengleichung |0 (DE-588)4169125-8 |D s |
689 | 1 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Eigenwertproblem |0 (DE-588)4013802-1 |D s |
689 | 2 | 1 | |a ALGOL |0 (DE-588)4001182-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 3 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008192870&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-008192870 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804126703787704320 |
---|---|
adam_text | LARRY SMITH LINEAR ALGEBRA THIRD EDITION WITH 23 ILLUSTRATIONS SPRINGER
CONTENTS PREFACE. VU 1. VECTORS IN THE PLANE AND IN SPACE 1 1.1 FIRST
STEPS 1 1.2 EXERCISES 12 2. VECTOR SPACES 15 2.1 AXIOMS FOR VECTOR
SPACES 15 2.2 CARTESIAN (OR EUCLIDEAN) SPACES 18 2.3 SOME RULES FOR
VECTOR ALGEBRA 21 2.4 EXERCISES 22 3. EXAMPLES OF VECTOR SPACES 25 3.1
THREE BASIC EXAMPLES 25 3.2 FURTHER EXAMPLES OF VECTOR SPACES 27 3.3
EXERCISES 30 4. SUBSPACES 35 4.1 BASIC PROPERTIES OF VECTOR SUBSPACES 35
4.2 EXAMPLES OF SUBSPACES 41 4.3 EXERCISES 42 5. LINEAR INDEPENDENCE AND
DEPENDENCE 47 5.1 BASIC DEFINITIONS AND EXAMPLES 47 5.2 PROPERTIES OF
INDEPENDENT AND DEPENDENT SETS 50 5.3 EXERCISES 53 IX X CONTENTS 6.
FINITE-DIMENSIONAL VECTOR SPACES AND BASES 57 6.1 FINITE-DIMENSIONAL
VECTOR SPACES 57 6.2 PROPERTIES OF BASES 61 6.3 USING BASES 65 6.4
EXERCISES 71 7. THE ELEMENTS OF VECTOR SPACES: A SUMMING UP 75 7.1
NUMERICAL EXAMPLES 75 7.2 EXERCISES 82 8. LINEAR TRANSFORMATIONS 85 8.1
DEFINITION OF LINEAR TRANSFORMATIONS 85 8.2 EXAMPLES OF LINEAR
TRANSFORMATIONS 89 8.3 PROPERTIES OF LINEAR TRANSFORMATIONS 91 8.4
IMAGES AND KERNELS OF LINEAR TRANSFORMATIONS 94 8.5 SOME FUNDAMENTAL
CONSTRUCTIONS 98 8.6 ISOMORPHISM OF VECTOR SPACES 102 8.7 EXERCISES 109
9. LINEAR TRANSFORMATIONS: EXAMPLES AND APPLICATIONS 113 9.1 NUMERICAL
EXAMPLES 113 9.2 SOME APPLICATIONS 123 9.3 EXERCISES 124 10. LINEAR
TRANSFORMATIONS AND MATRICES 129 10.1 LINEAR TRANSFORMATIONS AND
MATRICES IN IR 3 129 10.2 SOME NUMERICAL EXAMPLES 134 10.3 MATRICES AND
THEIR ALGEBRA -,.... 136 10.4 SPECIAL TYPES OF MATRICES 141 10.5
EXERCISES 151 11. REPRESENTING LINEAR TRANSFORMATIONS BY MATRICES 159
11.1 REPRESENTING A LINEAR TRANSFORMATION BY A MATRIX .. 159 11.2 BASIC
THEOREMS 165 11.3 CHANGE OF BASES 174 11.4 EXERCISES 178 12. MORE ON
REPRESENTING LINEAR TRANSFORMATIONS BY MATRICES 185 12.1 PROJECTIONS 185
CONTENTS XI 12.2 NILPOTENT TRANSFORMATIONS 191 12.3 CYCLIC
TRANSFORMATIONS 193 12.4 EXERCISES 195 13. SYSTEMS OF LINEAR EQUATIONS
199 13.1 EXISTENCE THEOREMS 201 13.2 REDUCTION TO ECHELON FORM 209 13.3
THE SIMPLEX METHOD 216 13.4 EXERCISES 224 14. THE ELEMENTS OF EIGENVALUE
AND EIGENVECTOR THEORY 227 14.1 THE RANK OF AN ENDOMORPHISM 227 14.2
EIGENVALUES AND EIGENVECTORS 230 14.3 DETERMINANTS 238 14.4 THE
CHARACTERISTIC POLYNOMIAL 245 14.5 DIAGONALIZATION THEOREMS 253 14.6
EXERCISES 260 15. INNER PRODUCT SPACES 267 15.1 SCALAR PRODUCTS 268 15.2
INNER PRODUCT SPACES 274 15.3 ISOMETRIES 288 15.4 THE RIESZ
REPRESENTATION THEOREM 291 15.5 LEGENDRE POLYNOMIALS 298 15.6 EXERCISES
301 16. THE SPECTRAL THEOREM AND QUADRATIC FORMS 307 16.1 SELF-ADJOINT
TRANSFORMATIONS 308 16.2 THE SPECTRAL THEOREM 316 16.3 THE PRINCIPAL
AXIS THEOREM FOR QUADRATIC FORMS ... 324 16.4 A PROOF OF THE SPECTRAL
THEOREM IN THE GENERAL CASE 335 16.5 EXERCISES 338 17. JORDAN CANONICAL
FORM 343 17.1 INVARIANT SUBSPACES ; 345 17.2 NILPOTENT TRANSFORMATIONS
350 17.3 THE JORDAN NORMAL FORM 357 17.4 SQUARE ROOTS 372 17.5 THE
HAMILTON-CAYLEY THEOREM 374 17.6 INVERSES 376 17.7 EXERCISES : 377 XII
CONTENTS 18. APPLICATION TO DIFFERENTIAL EQUATIONS 381 18.1 LINEAR
DIFFERENTIAL SYSTEMS: BASIC DEFINITIONS 381 18.2 DIAGONALIZABLE SYSTEMS
386 18.3 APPLICATION OF JORDAN FORM 395 18.4 EXERCISES 402 19. THE
SIMILARITY PROBLEM 405 19.1 THE FUNDAMENTAL PROBLEM OF LINEAR ALGEBRA
405 19.2 A BIT OF INVARIANT THEORY 406 19.3 EXERCISES 409 A. MULTILINEAR
ALGEBRA AND DETERMINANTS 411 A.1 MULTILINEAR FORMS. 411 A.2 DETERMINANTS
415 A.3 EXERCISES 428 B. COMPLEX NUMBERS 433 B.I THE COMPLEX NUMBERS 433
B.2 EXERCISES 441 FONT USAGE 443 NOTATIONS 445 INDEX 447
|
any_adam_object | 1 |
author | Smith, Larry |
author_facet | Smith, Larry |
author_role | aut |
author_sort | Smith, Larry |
author_variant | l s ls |
building | Verbundindex |
bvnumber | BV012097903 |
classification_rvk | SK 220 |
ctrlnum | (OCoLC)845055308 (DE-599)BVBBV012097903 |
dewey-full | 512.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.5 |
dewey-search | 512.5 |
dewey-sort | 3512.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 3. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02651nam a2200637 c 4500</leader><controlfield tag="001">BV012097903</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20020816 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">980728s1998 gw d||| |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">954079621</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387984550</subfield><subfield code="c">Pp. : DM 98.00</subfield><subfield code="9">0-387-98455-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)845055308</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012097903</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 220</subfield><subfield code="0">(DE-625)143224:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Smith, Larry</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear algebra</subfield><subfield code="c">Larry Smith</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 452 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Undergraduate texts in mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eigenwertproblem</subfield><subfield code="0">(DE-588)4013802-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrizengleichung</subfield><subfield code="0">(DE-588)4169125-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">ALGOL</subfield><subfield code="0">(DE-588)4001182-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">ALGOL</subfield><subfield code="0">(DE-588)4001182-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Matrizengleichung</subfield><subfield code="0">(DE-588)4169125-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Eigenwertproblem</subfield><subfield code="0">(DE-588)4013802-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">ALGOL</subfield><subfield code="0">(DE-588)4001182-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008192870&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008192870</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | (DE-588)4151278-9 Einführung gnd-content (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Einführung Lehrbuch |
id | DE-604.BV012097903 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:21:40Z |
institution | BVB |
isbn | 0387984550 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008192870 |
oclc_num | 845055308 |
open_access_boolean | |
owner | DE-20 DE-703 DE-824 DE-898 DE-BY-UBR DE-83 DE-11 |
owner_facet | DE-20 DE-703 DE-824 DE-898 DE-BY-UBR DE-83 DE-11 |
physical | XII, 452 S. graph. Darst. |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer |
record_format | marc |
series2 | Undergraduate texts in mathematics |
spelling | Smith, Larry Verfasser aut Linear algebra Larry Smith 3. ed. New York [u.a.] Springer 1998 XII, 452 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Undergraduate texts in mathematics Eigenwertproblem (DE-588)4013802-1 gnd rswk-swf Matrizengleichung (DE-588)4169125-8 gnd rswk-swf ALGOL (DE-588)4001182-3 gnd rswk-swf Numerische Mathematik (DE-588)4042805-9 gnd rswk-swf Lineare Algebra (DE-588)4035811-2 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf (DE-588)4151278-9 Einführung gnd-content (DE-588)4123623-3 Lehrbuch gnd-content Numerische Mathematik (DE-588)4042805-9 s Lineare Algebra (DE-588)4035811-2 s ALGOL (DE-588)4001182-3 s 1\p DE-604 Matrizengleichung (DE-588)4169125-8 s Numerisches Verfahren (DE-588)4128130-5 s 2\p DE-604 Eigenwertproblem (DE-588)4013802-1 s 3\p DE-604 4\p DE-604 HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008192870&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Smith, Larry Linear algebra Eigenwertproblem (DE-588)4013802-1 gnd Matrizengleichung (DE-588)4169125-8 gnd ALGOL (DE-588)4001182-3 gnd Numerische Mathematik (DE-588)4042805-9 gnd Lineare Algebra (DE-588)4035811-2 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
subject_GND | (DE-588)4013802-1 (DE-588)4169125-8 (DE-588)4001182-3 (DE-588)4042805-9 (DE-588)4035811-2 (DE-588)4128130-5 (DE-588)4151278-9 (DE-588)4123623-3 |
title | Linear algebra |
title_auth | Linear algebra |
title_exact_search | Linear algebra |
title_full | Linear algebra Larry Smith |
title_fullStr | Linear algebra Larry Smith |
title_full_unstemmed | Linear algebra Larry Smith |
title_short | Linear algebra |
title_sort | linear algebra |
topic | Eigenwertproblem (DE-588)4013802-1 gnd Matrizengleichung (DE-588)4169125-8 gnd ALGOL (DE-588)4001182-3 gnd Numerische Mathematik (DE-588)4042805-9 gnd Lineare Algebra (DE-588)4035811-2 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
topic_facet | Eigenwertproblem Matrizengleichung ALGOL Numerische Mathematik Lineare Algebra Numerisches Verfahren Einführung Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008192870&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT smithlarry linearalgebra |