Introduction to vortex theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Potomac, Md.
Vortex Flow Press
1996
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVIII, 627 S. Ill., graph. Darst. |
ISBN: | 0965768902 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV012080408 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 980730s1996 ad|| |||| 00||| eng d | ||
020 | |a 0965768902 |9 0-9657689-0-2 | ||
035 | |a (OCoLC)37398474 | ||
035 | |a (DE-599)BVBBV012080408 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-210 |a DE-83 | ||
050 | 0 | |a QA925 | |
082 | 0 | |a 532/.0595 |2 21 | |
084 | |a UF 4300 |0 (DE-625)145584: |2 rvk | ||
100 | 1 | |a Lugt, Hans J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to vortex theory |c by Hans J. Lugt |
264 | 1 | |a Potomac, Md. |b Vortex Flow Press |c 1996 | |
300 | |a XVIII, 627 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Viscous flow | |
650 | 4 | |a Vortex-motion | |
650 | 0 | 7 | |a Wirbel |g Physik |0 (DE-588)4128386-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wirbel |g Physik |0 (DE-588)4128386-7 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008179021&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-008179021 |
Datensatz im Suchindex
_version_ | 1804126682644217856 |
---|---|
adam_text | ir and Technology, Wiley-Interscience 1983 and
eX flow in ^ri995
presented j^ieger Pub^*1111® tu jents with a background in fluid dynamics and
reprinted w addressed to ^ c0nveys the function of vorticity in the
This te*tb°° ;c 0rgan^ed lD *f vortices, the role of vortical patterns in fluid flow,
mabcS- lt r and decay peering, biology, meteorology, and oceano-
ma atio°’ ***ncc °f v0fticel on the semantics of the words vortex and vorticity
STtitf this hwh was * Selec,ion of miUerM •»
graphy ^®t di^culty 10
The grea fLature- d c0Ueagues Acknowledgement is especially due
“ , many friend f Karlsruhe; P Freymuth, University of Colorado; H
tT-lr/PfSity ^_i __j; anH R« ’Crzirrn T Inivpretfo Ai
immense
R-Veraicc„, Universitä di Roma;
fc, K-- n University’’ poweli, University of Houston; T Sarpkaya,
° her- A1000 riarkson Unj^e ’ thicker, Technische Hochschule Aachen; G S
wtr C- phi5llPl’iate School; ^ sling, Naval Surface Warfare Center, Carderock;
w val poStgrrorski 20(3 ,n2Sanstalt für Luft und Raumfahrt, Göttingen; L
FofÄ -* Tecboteey; *»d A- Caiif»™a
U Phonal °m pleased to F UniVer‘
Schini^’fecbnolo© ’ ver most parts o
Institut® ton, who we ^ijce PhilÜPs’ who has helped to improve the
ititude g0^ t0 0f mine for ffl0re than two decades and made
uU/ fttions»
sity
re
^vemen tn
wife Anneliese, whose encouragement and support
Hans J Lugt
Potomac, Maryland, spring 1995
-iv-
Contents
Frequently Used Symbols x
Preliminary Remarks xiv
1 Vortices as Flow Patterns 1
1 1 Flow Patterns in Lagrangian and Eulerian Frames 1
1 2 Definition of Vortices and their Role in Fluid Motion 4
1 3 Streamline, Pathline, Timeline, and Streakline 5
1 4 Topological Aspects of Flow Patterns 12
1 5 The Invariance of Vorticity Fields 16
1 6 Patterns which Exist only on the Average 18
2 Basic Concepts and Laws 21
2 1 The Modeling of Fluid Motion 21
2 2 Three Theorems of Vector Fields 22
2 3 Conservation Laws 26
2 4 Constitutive Equations 30
2 5 The Basic Equations of Motion 32
2 6 Initial and Boundary Conditions 33
2 7 Conservation Law of Angular Momentum 36
3 The Navier-Stokes Equations 39
3 1 Various Forms and Properties 39
3 2 Basic Equations in Different Coordinate Systems 43
3 3 An Example of Local Boundary Conditions 49
3 4 The Concept of Similarity 51
3 5 Basic Equations in Dimensionless Form 53
3 6 Truncated Versions of the Navier-Stokes Equations 55
4 Symmetric Solutions of the Navier-Stokes Equations for Vortices 59
4 1 Universal Solutions 60
4 2 Similarity Solutions for Decaying Vortices 65
4 3 Vortices Perpendicular to a Slip Surface 76
4 4 Assessment 85
- v -
5 Vorticity 89
5 1 The Vorticity-Induction Equation 90
5 2 Vorticity-Transport Equation 92
5 3 Vorticity Theorems of Helmholtz 96
5 4 Vorticity Generation 101
5 5 Maximum Principles 107
5 6 Forces Acting on a Body 111
5 7 Circulation 113
5 8 Summary 115
6 Potential Flow I 119
6 1 General Properties 119
6 2 Bernoulli’s Theorems 122
6 3 Complex-Function Theory Applied to Two-Dimensional Flows 123
6 4 Two-Dimensional Wing Theory 131
6 5 Quantized Vortices in Superfluid Helium 134
7 Potential Flow II 137
7 1 Two Point Vortices 137
7 2 Symmetric Systems of Point Vortices 142
7 3 Excursus into Classical Mechanics 147
7 4 The Hamiltonian System of Point Vortices 151
7 5 Chaotic Motion of Point Vortices 156
7 6 Point Vortices near a Solid Boundary 158
8 Potential Flow III 165
8 1 Discontinuity Lines 166
8 2 Vortex-Wake Models for Wings 169
8 3 The Roll-Up of a Discontinuity Line 174
8 4 Conical Vortex Sheets 184
8 5 Vortex Lines in Three Dimensions 188
8 6 Assessment 192
9 Inviscid Vortices I 195
9 1 Integral Invariants in Two-Dimensional How 196
9 2 Elliptical Vortices 197
9 3 Nonuniform Vortices of Constant Shape 202
9 4 Vortices of Deformable Shape 203
- vi -
10 Inviscid Vortices II
213
10 1 Integral Invariants in Three-Dimensional Flow
10 2 Vortex Rings
10 3 The Local Induction Equation
10 4 Vortex Filaments Moving with Constant and Deformable Shapes
10 5 Vortex Filaments with Axial Velocity
10 6 Assessment
11 Instability
11 1 The Concept of Instability
11 2 Linear Instability of Inviscid Flows
11 3 Nonlinear Instability of Inviscid Flows
11 4 Unstable Viscous Shear Layers
11 5 Taylor-Couette Flow
11 6 Self-Rotation
11 7 Concluding Remarks
12 Flow Separation and Vortex Generation
12 1 Two-Dimensional Flow Separation
12 2 Preliminary Remarks on Three-Dimensional Flow Separation
12 3 Three-Dimensional Flow Near Singular Points on a Nonslip Surface
12 4 Three-Dimensional Flow Near Singular Points on a Slip Surface
12 5 Flow Topology of a Finite Region
12 6 Towards a Vortex Definition in a Viscous Fluid
13 Properties of Viscous Vortices I
13 1 Stokes Vortices
13 2 Vortices Attached to a Surface
13 3 Vortex Shedding
14 Properties of Viscous Vortices II
14 1 Viscous Vortex Pairs and Rings
14 2 Vortex Merging, Splitting, and Reconnection
14 3 Two Examples of Three-Dimensional Vortices on a Body Surface
14 4 The Complexity of Vortex Patterns
15 Vortices near a Boundary
15 1 Two-Dimensional Vortices near a Nonslip Surface
- vii -
214
215
228
231
238
241
245
246
249
256
260
265
275
277
279
280
286
290
297
300
304
309
310
319
325
339
339
344
350
356
361
361
15 2 Two-Dimensional Vortices near a Free Surface 363
15 3 Vortex Rings Normal to a Surface 375
15 4 Vortex Rings approaching a Surface Obliquely 377
15 5 Rotating Fluids Normal to a Nonslip Surface 391
16 Swirling Motion 403
16 1 Inviscid Swirling Motion with Straight Axial Flow 404
16 2 Viscous Swirling Motion with Straight Axial Flow 409
16 3 Waves in Swirling Motion 414
16 4 Vortex Breakdown 420
16 5 Rotating Fluids in a Container 430
16 6 Intake Vortices 436
17 Vortex Shedding from Oscillating and Rotating Bodies, Vortex Sound 441
17 1 Preliminary Remarks on Pendulum Motion 442
17 2 The “Black-Box” Approach 447
17 3 Autorotation of Plates 451
17 4 Vortex-Induced Oscillation 454
17 5 Vortex Sound 459
18 Remarks on Turbulent Vortices 467
18 1 Some Basic Concepts 468
18 2 The Hypothesis of Eddy Viscosity 472
18 3 Turbulent Vortex Rings 477
18 4 Coherent Structures 480
18 5 Closing Remark 487
19 Vortices in a Rotating Frame 489
19 1 Equations of Motion in a Rotating Frame 489
19 2 Hyperbolicity and Taylor-Proudman Theorem 490
19 3 Inviscid Vortices in a Rotating Frame 499
19 4 Large-Scale Circulation 504
20 Miscellaneous Topics 509
20 1 Symmetry and Conservation of Vorticity 509
20 2 Generalized Vorticity Equations for Viscous Fluid Flows 515
20 3 Stratification and Buoyancy 520
20 4 Cellular Convection 532
- viii -
Epilogue
543
Appendix A: Useful Relations among Differential Operators, Integral Formulas 547
Appendix B: Classification of Singular Points 549
References ^55
Subject Index
|
any_adam_object | 1 |
author | Lugt, Hans J. |
author_facet | Lugt, Hans J. |
author_role | aut |
author_sort | Lugt, Hans J. |
author_variant | h j l hj hjl |
building | Verbundindex |
bvnumber | BV012080408 |
callnumber-first | Q - Science |
callnumber-label | QA925 |
callnumber-raw | QA925 |
callnumber-search | QA925 |
callnumber-sort | QA 3925 |
callnumber-subject | QA - Mathematics |
classification_rvk | UF 4300 |
ctrlnum | (OCoLC)37398474 (DE-599)BVBBV012080408 |
dewey-full | 532/.0595 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 532 - Fluid mechanics |
dewey-raw | 532/.0595 |
dewey-search | 532/.0595 |
dewey-sort | 3532 3595 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01275nam a2200361 c 4500</leader><controlfield tag="001">BV012080408</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">980730s1996 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0965768902</subfield><subfield code="9">0-9657689-0-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)37398474</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012080408</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA925</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532/.0595</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4300</subfield><subfield code="0">(DE-625)145584:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lugt, Hans J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to vortex theory</subfield><subfield code="c">by Hans J. Lugt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Potomac, Md.</subfield><subfield code="b">Vortex Flow Press</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 627 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscous flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vortex-motion</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wirbel</subfield><subfield code="g">Physik</subfield><subfield code="0">(DE-588)4128386-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wirbel</subfield><subfield code="g">Physik</subfield><subfield code="0">(DE-588)4128386-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008179021&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008179021</subfield></datafield></record></collection> |
id | DE-604.BV012080408 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:21:20Z |
institution | BVB |
isbn | 0965768902 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008179021 |
oclc_num | 37398474 |
open_access_boolean | |
owner | DE-703 DE-210 DE-83 |
owner_facet | DE-703 DE-210 DE-83 |
physical | XVIII, 627 S. Ill., graph. Darst. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Vortex Flow Press |
record_format | marc |
spelling | Lugt, Hans J. Verfasser aut Introduction to vortex theory by Hans J. Lugt Potomac, Md. Vortex Flow Press 1996 XVIII, 627 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Viscous flow Vortex-motion Wirbel Physik (DE-588)4128386-7 gnd rswk-swf Wirbel Physik (DE-588)4128386-7 s DE-604 HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008179021&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Lugt, Hans J. Introduction to vortex theory Viscous flow Vortex-motion Wirbel Physik (DE-588)4128386-7 gnd |
subject_GND | (DE-588)4128386-7 |
title | Introduction to vortex theory |
title_auth | Introduction to vortex theory |
title_exact_search | Introduction to vortex theory |
title_full | Introduction to vortex theory by Hans J. Lugt |
title_fullStr | Introduction to vortex theory by Hans J. Lugt |
title_full_unstemmed | Introduction to vortex theory by Hans J. Lugt |
title_short | Introduction to vortex theory |
title_sort | introduction to vortex theory |
topic | Viscous flow Vortex-motion Wirbel Physik (DE-588)4128386-7 gnd |
topic_facet | Viscous flow Vortex-motion Wirbel Physik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008179021&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT lugthansj introductiontovortextheory |