An introduction to differentiable manifolds and Riemannian geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | Undetermined |
Veröffentlicht: |
San Diego [u.a.]
Acad. Press
1997
|
Ausgabe: | 2. ed., [Nachdr.] |
Schriftenreihe: | Pure and applied mathematics
120 |
Schlagworte: | |
Beschreibung: | XVI, 430 S. Ill., graph. Darst. |
ISBN: | 0121160521 012116053X |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV012056838 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 980714s1997 ad|| |||| 00||| und d | ||
020 | |a 0121160521 |9 0-12-116052-1 | ||
020 | |a 012116053X |9 0-12-116053-X | ||
035 | |a (OCoLC)634127411 | ||
035 | |a (DE-599)BVBBV012056838 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | |a und | ||
049 | |a DE-20 | ||
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
100 | 1 | |a Boothby, William M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a An introduction to differentiable manifolds and Riemannian geometry |c William M. Boothby |
250 | |a 2. ed., [Nachdr.] | ||
264 | 1 | |a San Diego [u.a.] |b Acad. Press |c 1997 | |
300 | |a XVI, 430 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Pure and applied mathematics |v 120 | |
650 | 0 | 7 | |a Differenzierbare Mannigfaltigkeit |0 (DE-588)4012269-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentiation |g Mathematik |0 (DE-588)4149787-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riemannscher Raum |0 (DE-588)4128295-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | 1 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Riemannscher Raum |0 (DE-588)4128295-4 |D s |
689 | 1 | 1 | |a Differentiation |g Mathematik |0 (DE-588)4149787-9 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Differenzierbare Mannigfaltigkeit |0 (DE-588)4012269-4 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
830 | 0 | |a Pure and applied mathematics |v 120 |w (DE-604)BV010177228 |9 120 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-008160286 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804126654240391168 |
---|---|
any_adam_object | |
author | Boothby, William M. |
author_facet | Boothby, William M. |
author_role | aut |
author_sort | Boothby, William M. |
author_variant | w m b wm wmb |
building | Verbundindex |
bvnumber | BV012056838 |
classification_rvk | SK 350 SK 370 |
ctrlnum | (OCoLC)634127411 (DE-599)BVBBV012056838 |
discipline | Mathematik |
edition | 2. ed., [Nachdr.] |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01983nam a2200505 cb4500</leader><controlfield tag="001">BV012056838</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">980714s1997 ad|| |||| 00||| und d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0121160521</subfield><subfield code="9">0-12-116052-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">012116053X</subfield><subfield code="9">0-12-116053-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)634127411</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012056838</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">und</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Boothby, William M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to differentiable manifolds and Riemannian geometry</subfield><subfield code="c">William M. Boothby</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed., [Nachdr.]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">San Diego [u.a.]</subfield><subfield code="b">Acad. Press</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 430 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Pure and applied mathematics</subfield><subfield code="v">120</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentiation</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4149787-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Differentiation</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4149787-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Pure and applied mathematics</subfield><subfield code="v">120</subfield><subfield code="w">(DE-604)BV010177228</subfield><subfield code="9">120</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008160286</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV012056838 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:20:53Z |
institution | BVB |
isbn | 0121160521 012116053X |
language | Undetermined |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008160286 |
oclc_num | 634127411 |
open_access_boolean | |
owner | DE-20 |
owner_facet | DE-20 |
physical | XVI, 430 S. Ill., graph. Darst. |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Acad. Press |
record_format | marc |
series | Pure and applied mathematics |
series2 | Pure and applied mathematics |
spelling | Boothby, William M. Verfasser aut An introduction to differentiable manifolds and Riemannian geometry William M. Boothby 2. ed., [Nachdr.] San Diego [u.a.] Acad. Press 1997 XVI, 430 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Pure and applied mathematics 120 Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd rswk-swf Riemannsche Geometrie (DE-588)4128462-8 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Differentiation Mathematik (DE-588)4149787-9 gnd rswk-swf Riemannscher Raum (DE-588)4128295-4 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 s Riemannsche Geometrie (DE-588)4128462-8 s DE-604 Riemannscher Raum (DE-588)4128295-4 s Differentiation Mathematik (DE-588)4149787-9 s 1\p DE-604 Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 s 2\p DE-604 Pure and applied mathematics 120 (DE-604)BV010177228 120 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Boothby, William M. An introduction to differentiable manifolds and Riemannian geometry Pure and applied mathematics Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd Riemannsche Geometrie (DE-588)4128462-8 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Differentiation Mathematik (DE-588)4149787-9 gnd Riemannscher Raum (DE-588)4128295-4 gnd |
subject_GND | (DE-588)4012269-4 (DE-588)4128462-8 (DE-588)4037379-4 (DE-588)4149787-9 (DE-588)4128295-4 |
title | An introduction to differentiable manifolds and Riemannian geometry |
title_auth | An introduction to differentiable manifolds and Riemannian geometry |
title_exact_search | An introduction to differentiable manifolds and Riemannian geometry |
title_full | An introduction to differentiable manifolds and Riemannian geometry William M. Boothby |
title_fullStr | An introduction to differentiable manifolds and Riemannian geometry William M. Boothby |
title_full_unstemmed | An introduction to differentiable manifolds and Riemannian geometry William M. Boothby |
title_short | An introduction to differentiable manifolds and Riemannian geometry |
title_sort | an introduction to differentiable manifolds and riemannian geometry |
topic | Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd Riemannsche Geometrie (DE-588)4128462-8 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Differentiation Mathematik (DE-588)4149787-9 gnd Riemannscher Raum (DE-588)4128295-4 gnd |
topic_facet | Differenzierbare Mannigfaltigkeit Riemannsche Geometrie Mannigfaltigkeit Differentiation Mathematik Riemannscher Raum |
volume_link | (DE-604)BV010177228 |
work_keys_str_mv | AT boothbywilliamm anintroductiontodifferentiablemanifoldsandriemanniangeometry |