Holomorphic families of immersions and higher analytic torsion forms:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
[Paris]
Soc. Math. de France
1997
|
Schriftenreihe: | Astérisque
244 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | VII, 275 S. graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV011994249 | ||
003 | DE-604 | ||
005 | 19990127 | ||
007 | t | ||
008 | 980609s1997 d||| |||| 00||| eng d | ||
035 | |a (OCoLC)245713784 | ||
035 | |a (DE-599)BVBBV011994249 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-355 |a DE-29T |a DE-824 |a DE-384 |a DE-12 |a DE-19 |a DE-91G |a DE-11 | ||
084 | |a SI 832 |0 (DE-625)143196: |2 rvk | ||
100 | 1 | |a Bismut, Jean-Michel |d 1948- |e Verfasser |0 (DE-588)141840056 |4 aut | |
245 | 1 | 0 | |a Holomorphic families of immersions and higher analytic torsion forms |c Jean-Michel Bismut |
264 | 1 | |a [Paris] |b Soc. Math. de France |c 1997 | |
300 | |a VII, 275 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Astérisque |v 244 | |
650 | 0 | 7 | |a Immersion |g Differentialgeometrie |0 (DE-588)4191446-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Torsion |0 (DE-588)4125469-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Komplexe Mannigfaltigkeit |0 (DE-588)4031996-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Holomorphie |0 (DE-588)4160484-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Komplexe Mannigfaltigkeit |0 (DE-588)4031996-9 |D s |
689 | 0 | 1 | |a Immersion |g Differentialgeometrie |0 (DE-588)4191446-6 |D s |
689 | 0 | 2 | |a Torsion |0 (DE-588)4125469-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Holomorphie |0 (DE-588)4160484-2 |D s |
689 | 1 | |5 DE-604 | |
830 | 0 | |a Astérisque |v 244 |w (DE-604)BV002579439 |9 244 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008117227&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-008117227 |
Datensatz im Suchindex
_version_ | 1804126590636916738 |
---|---|
adam_text | 244 ASTERISQUE 1997 HOLOMORPHIC FAMILIES OF IMMERSIONS AND HIGHER
ANALYTIC TORSION FORMS JEAN-MICHEL BISMUT SOCIETE MATHEMATIQUE DE FRANCE
PUBLIE AVEC LE CONCOURS DU CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
CONTENTS INTRODUCTION 1 1 FAMILIES OF IMMERSIONS AND CONNECTIONS ON THE
RELATIVE TANGENT BUNDLE 13 1.1 A CANONICAL CONNECTION ON THE RELATIVE
TANGENT BUNDLE OF A FIBRATION 13 1.2 AN IDENTITY ON THE CONNECTION ON
THE RELATIVE TANGENT BUNDLE . . . . 15 1.3 FAMILIES OF IMMERSIONS AND
THE CORRESPONDING CONNECTIONS ON THE RELATIVE TANGENT BUNDLES 16 2
KAHLER FIBRATIONS, HIGHER ANALYTIC TORSION FORMS AND ANOMALY FORMU- LAS
23 2.1 KAHLER FIBRATIONS 23 2.2 COMPLEX HERMITIAN VECTOR SPACES AND
CLIFFORD ALGEBRAS 26 2.3 THE LEVI-CIVITA SUPERCONNECTION OF THE
FIBRATION . . . . 27 2.4 SUPERCONNECTION FORMS AND TRANSGRESSION
FORMULAS 29 2.5 THE ASYMPTOTICS OF THE SUPERCONNECTION FORMS AS U ** 0
30 2.6 THE ASYMPTOTICS OF THE SUPERCONNECTION FORMS ASU- +OO 31 2.7
HIGHER ANALYTIC TORSION FORMS 32 2.8 ANOMALY FORMULAS FOR THE ANALYTIC
TORSION FORMS 33 3 KAHLER FIBRATIONS, RESOLUTIONS, AND BOTT-CHERN
CURRENTS 35 3.1 A FAMILY OF DOUBLE COMPLEXES 35 3.2 THE ANALYTIC TORSION
FORMS OF THE DOUBLE COMPLEX 37 3.3 ASSUMPTIONS ON THE METRICS ON , R
40 3.4 A BOTT-CHERN CURRENT 41 4 AN IDENTITY ON TWO PARAMETERS
DIFFERENTIAL FORMS 43 4.1 A BASIC IDENTITY OF DIFFERENTIAL FORMS 43 4.2
A CHANGE OF COORDINATES 46 SOCIETE MATHEMATIQUE DE FRANCE IV CONTENTS
4.3 A CONTOUR INTEGRAL 47 4.4 SOME ELEMENTARY IDENTITIES 48 5 THE
ANALYTIC TORSION FORMS OF A SHORT EXACT SEQUENCE 51 5.1 SHORT EXACT
SEQUENCES ARID SUPERCONNECTIONS 51 5.2 THE CONJUGATE SUPERCONNECTIONS ^U
AND 9) U 54 5.3 GENERALIZED SUPERTRACES 55 5.4 TRANSGRESSION FORMULAS
AND CONVERGENCE OF GENERALIZED SUPERTRACES . 56 5.5 GENERALIZED ANALYTIC
TORSION FORMS 56 5.6 EVALUATION OF THE GENERALIZED ANALYTIC TORSION
FORMS 57 5.7 EQUIVARIANT GENERALIZED ANALYTIC TORSION FORMS 58 5.8 SOME
IDENTITIES ON GENERALIZED SUPERTRACES 60 5.9 A CONJUGATION FORMULA . .-
67 6 A PROOF OF THEOREM 0.1 , 69 6.1 THE MAIN THEOREM 70 6.2 A RESCALED
METRIC ON E . . 71 6.3 THE LEFT-HAND SIDE OF (4.26): SEVEN INTERMEDIATE
RESULTS 72 6.4 THE ASYMPTOTICS OF THE L S 74 THE TERM 7? 75 THE TERM 1$
7 7 THE TERM 1$ 79 THE TERM 1% 80 6.5 THE DIVERGENCES OF THE LEFT-HAND
SIDE OF (4.26) . . . 83 6.6 THE-RIGHT-HAND SIDE OF (4.26): FIVE
INTERMEDIATE RESULTS 84 6.7 THE ASYMPTOTICS OF THE RIGHT-HAND SIDE OF
(4.26) 88 6.8 MATCHING THE DIVERGENCES 105 6.9 AN IDENTITY ON BOTT-CHERN
CLASSES AND BOTT-CHERN CURRENTS 107 6.10 PROOF OF THEOREM 6.2 108 7 A
NEW HORIZONTAL BUNDLE ON V AND THE CONJUGATE SUPERCONNECTION A UYT 109
7.1 A FORMULA FOR D X AND D Y 110 7.2 THE CANONICAL EXACT SEQUENCE ON W
110 7.3 A COORDINATE SYSTEM ON V NEAR W ILL 7.4 A SPLITTING OF NEAR W
ILL 7.5 A COHOMOLOGICAL OBSTRUCTION TO THE EQUALITY T H V W =T H W .
. . . 113 7.6 AN EXTENSION OF T H W TOV 114 ASTERISQUE CONTENTS 7.7 THE
CONJUGATE SUPERCONNECTION A U: T 116 7.8 A LICHNEROWICZ FORMULA FOR A T
AND A T 118 8 A TAYLOR EXPANSION OF THE SUPERCONNECTION A ^ NEAR W 121
8.1 A TRIVIALIZATION OF A(T* (0 1) ^) § ALONG GEODESIES NORMAL TO Y
... 121 8.2 A TAYLOR EXPANSION FOR AI T X NEAR W , 122 8.3 THE
PROJECTION OF THE SUPERCONNECTION 93 128 9 THE ASYMPTOTICS OF
SUPERTRACES INVOLVING THE OPERATOR EXP(-B^ T ) FOR LARGE VALUES OF U, T
131 9.1 THE SPECTRUM OF B 2UT 133 9.2 A SCALING FORMULA . 134 9.3 TWO
INTERMEDIATE RESULTS 135 9.4 A FORMULA FOR P R F ^ H , W VP R W AND
ITS NORMAL DERIVATIVE ... 137 9.5 AN EMBEDDING OF F IN E 138 - 9.6 A
SOBOLEV NORM ON E 1 . . . I 140 9.7 ESTIMATES ON THE RESOLVENT OF A 144
9.8 REGULARIZING PROPERTIES OF THE RESOLVENT OF A 146 9.9 UNIFORM
ESTIMATES ON THE KERNEL F U (A ) 150 9.10 THE MATRIX STRUCTURE OF A AS
T * +00 153 9.11 THE ASYMPTOTICS OF THE OPERATOR F U {A^) AS T * +00
155 9.12 PROOF OF THEOREM 9.5 155 9.13 THE OPERATORS ^ A ,B,C,T * * * *
* 157 9.14 PROOF OF THEOREM 9.6 160 9.15 PROOF OF THEOREM 6.15 162 9.16
PROOF OF THEOREM 6.16 163 10 THE ASYMPTOTICS OF THE METRIC G {Y R)W) AS
T - +00 165 10.1 THE LIFT OF SECTIONS OF KER D Y TO SECTIONS OF KER A^
] ,-*** 165 10.2 THE LIFT OF SECTIONS OF KER D Y TO HARMONIC FORMS IN E
FO R 171 10.3 PROOF OF THEOREM 6.10 174 11 THE ANALYSIS OF THE TWO
PARAMETER SEMI-GROUP EXP(* A T ) IN THE RANGE UE]0,L],TG[0,I] 177
11.1 THE LIMIT AS U- OOF $TR S [AT HV EXP(-A2 )T )] 178 11.2
LOCALIZATION OF THE PROBLEM 179 11.3 A RESCALING OF THE NORMAL
COORDINATE Z O 182 11.4 A LOCAL COORDINATE SYSTEM NEAR W AND A
TRIVIALIZATION OF NYA(T^_S) S 182 SOCIETE MATHEMATIQUE DE FRANCE VI
CONTENTS 11.5 THE TAYLOR EXPANSION OF THE OPERATOR B U I 185 11.6
REPLACING X BY {T R X) VO . * 186 11.7 RESCALING OF THE .VARIABLE Z AND
OF THE CLIFFORD VARIABLES 187 11.8 THE MATRIX STRUCTURE OF I%%? /T 190
11.9 A FAMILY OF SOBOLEV SPACES WITH WEIGHTS 192 11.10 PROOF OF THEOREM
11.5 193 11.11 PROOF OF THEOREM 6.17 193 12 THE ANALYSIS OF THE KERNEL
OF F U (A 2U T/ J FOR T 0 AS U - 0 195 12.1 LOCALIZATION OF THE
PROBLEM 196 12.2 A LOCAL COORDINATE SYSTEM NEAR YO * W AND A
TRIVIALIZATION OF A(T^ ^X) 196 12.3 REPLACING THE FIBRE X BY (T R
X) YO 196 12.4 RESCALING OF THE VARIABLE Z AND OF THE HORIZONTAL
CLIFFORD VARIABLES . 197 12.5 THE ASYMPTOTICS OF THE OPERATOR L UV ^,, U
AS U * 0 198 12.6 PROOF OF THEOREM 6.8 . . 203 12.7 PROOF OF THE
FIRST HALF OF THEOREM 6.18 203 13 THE ANALYSIS OF THE TWO PARAMETER
OPERATOR EXP(* A T ) IN THE RANGE U E]0,1], T /U 213 13.1 A PROOF OF
THEOREM 6.9: THE PROBLEM IS LOCALIZABLE ON W 214 13.2 AN ORTHOGONAL
SPLITTING OF TX AND A CONNECTION ON TX 216 13.3 A LOCAL COORDINATE
SYSTEM NEAR YO * W AND A TRIVIALIZATION 217 13.4 REPLACING X BY (T R X)
YO ; 219 13.5 RESCALING OF Z AND OF THE HORIZONTAL CLIFFORD VARIABLES
220 13.6 A FORMULA FOR %%$! 222 13.7 THE ALGEBRAIC STRUCTURE OF THE
OPERATOR IE 3 ^ AS U * 0 225 13.8 THE MATRIX STRUCTURE OF THE OPERATOR
2*^? AS T * +OO 229 13.9 THE ASYMPTOTICS OF FR^^A^TK^^F^ 1 . 232
13.10 A FAMILY OF SOBOLEV SPACES WITH WEIGHTS 235 13.11 THE OPERATOR E
YO . 236 13.12 PROOF OF THEOREM 13.2 237 13.13 A PROOF OF THEOREM 6.19
237 AN EVALUATION OF THE LIMIT OI 6 UT T AS T * +OO 237 THE
CONNECTION 3V-VA(^S)§A(R-)A(T-(. 1 )X) 246 THE ALGEBRAIC STRUCTURE OF
%%VJ! AS U * 0 247 AN ESTIMATE ON 6 UIT / U - #* | 250 13.14 A PROOF
OF THE SECOND HALF OF THEOREM 6.18 251 ASTERISQUE CONTENTS - VII 14 A
PROOF OF THEOREM 0.2 259 14.1 A CLOSED FORM ON R+ X R+ 259 14.2 THE
ASYMPTOTICS OF THE 7 S 260 THE TERM 7{ 260 THE TERM / : 262 THE
TERM 7 264 THE TERM 7F 264 THE RIGHT-HAND SIDE OF (14.6) 265 14.3
MATCHING THE DIVERGENCES 266 14.4 PROOF OF THEOREM 0.2 266 15 A NEW
DERIVATION OF THE ASYMPTOTICS OF THE GENERALIZED SUPERTRACES ASSOCIATED
TO A SHORT EXACT SEQUENCE 267 15.1 A FAMILY OF IMMERSIONS 268 15.2 THE
SUPERCONNECTION 26 T 269 BIBLIOGRAPHY 273 SOCIETE MATHEMATIQUE DE FRANCE
|
any_adam_object | 1 |
author | Bismut, Jean-Michel 1948- |
author_GND | (DE-588)141840056 |
author_facet | Bismut, Jean-Michel 1948- |
author_role | aut |
author_sort | Bismut, Jean-Michel 1948- |
author_variant | j m b jmb |
building | Verbundindex |
bvnumber | BV011994249 |
classification_rvk | SI 832 |
ctrlnum | (OCoLC)245713784 (DE-599)BVBBV011994249 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01736nam a2200409 cb4500</leader><controlfield tag="001">BV011994249</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19990127 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">980609s1997 d||| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)245713784</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011994249</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 832</subfield><subfield code="0">(DE-625)143196:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bismut, Jean-Michel</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)141840056</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Holomorphic families of immersions and higher analytic torsion forms</subfield><subfield code="c">Jean-Michel Bismut</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Paris]</subfield><subfield code="b">Soc. Math. de France</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VII, 275 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Astérisque</subfield><subfield code="v">244</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Immersion</subfield><subfield code="g">Differentialgeometrie</subfield><subfield code="0">(DE-588)4191446-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Torsion</subfield><subfield code="0">(DE-588)4125469-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4031996-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Holomorphie</subfield><subfield code="0">(DE-588)4160484-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4031996-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Immersion</subfield><subfield code="g">Differentialgeometrie</subfield><subfield code="0">(DE-588)4191446-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Torsion</subfield><subfield code="0">(DE-588)4125469-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Holomorphie</subfield><subfield code="0">(DE-588)4160484-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Astérisque</subfield><subfield code="v">244</subfield><subfield code="w">(DE-604)BV002579439</subfield><subfield code="9">244</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008117227&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008117227</subfield></datafield></record></collection> |
id | DE-604.BV011994249 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:19:52Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008117227 |
oclc_num | 245713784 |
open_access_boolean | |
owner | DE-20 DE-355 DE-BY-UBR DE-29T DE-824 DE-384 DE-12 DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-11 |
owner_facet | DE-20 DE-355 DE-BY-UBR DE-29T DE-824 DE-384 DE-12 DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-11 |
physical | VII, 275 S. graph. Darst. |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Soc. Math. de France |
record_format | marc |
series | Astérisque |
series2 | Astérisque |
spelling | Bismut, Jean-Michel 1948- Verfasser (DE-588)141840056 aut Holomorphic families of immersions and higher analytic torsion forms Jean-Michel Bismut [Paris] Soc. Math. de France 1997 VII, 275 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Astérisque 244 Immersion Differentialgeometrie (DE-588)4191446-6 gnd rswk-swf Torsion (DE-588)4125469-7 gnd rswk-swf Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd rswk-swf Holomorphie (DE-588)4160484-2 gnd rswk-swf Komplexe Mannigfaltigkeit (DE-588)4031996-9 s Immersion Differentialgeometrie (DE-588)4191446-6 s Torsion (DE-588)4125469-7 s DE-604 Holomorphie (DE-588)4160484-2 s Astérisque 244 (DE-604)BV002579439 244 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008117227&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bismut, Jean-Michel 1948- Holomorphic families of immersions and higher analytic torsion forms Astérisque Immersion Differentialgeometrie (DE-588)4191446-6 gnd Torsion (DE-588)4125469-7 gnd Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd Holomorphie (DE-588)4160484-2 gnd |
subject_GND | (DE-588)4191446-6 (DE-588)4125469-7 (DE-588)4031996-9 (DE-588)4160484-2 |
title | Holomorphic families of immersions and higher analytic torsion forms |
title_auth | Holomorphic families of immersions and higher analytic torsion forms |
title_exact_search | Holomorphic families of immersions and higher analytic torsion forms |
title_full | Holomorphic families of immersions and higher analytic torsion forms Jean-Michel Bismut |
title_fullStr | Holomorphic families of immersions and higher analytic torsion forms Jean-Michel Bismut |
title_full_unstemmed | Holomorphic families of immersions and higher analytic torsion forms Jean-Michel Bismut |
title_short | Holomorphic families of immersions and higher analytic torsion forms |
title_sort | holomorphic families of immersions and higher analytic torsion forms |
topic | Immersion Differentialgeometrie (DE-588)4191446-6 gnd Torsion (DE-588)4125469-7 gnd Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd Holomorphie (DE-588)4160484-2 gnd |
topic_facet | Immersion Differentialgeometrie Torsion Komplexe Mannigfaltigkeit Holomorphie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008117227&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV002579439 |
work_keys_str_mv | AT bismutjeanmichel holomorphicfamiliesofimmersionsandhigheranalytictorsionforms |