Logic for mathematics and computer science:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Upper Saddle River, NJ
Prentice Hall
1998
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 420 S. graph. Darst. |
ISBN: | 0132859742 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV011981917 | ||
003 | DE-604 | ||
005 | 19980915 | ||
007 | t | ||
008 | 980528s1998 xxud||| |||| 00||| eng d | ||
020 | |a 0132859742 |9 0-13-285974-2 | ||
035 | |a (OCoLC)36817154 | ||
035 | |a (DE-599)BVBBV011981917 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-739 |a DE-20 |a DE-521 |a DE-634 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA9.B86 1998 | |
082 | 0 | |a 511.3 21 | |
082 | 0 | |a 511.3 |2 21 | |
084 | |a SK 130 |0 (DE-625)143216: |2 rvk | ||
100 | 1 | |a Burris, Stanley |e Verfasser |4 aut | |
245 | 1 | 0 | |a Logic for mathematics and computer science |c Stanley N. Burris |
264 | 1 | |a Upper Saddle River, NJ |b Prentice Hall |c 1998 | |
300 | |a 420 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 7 | |a Wiskundige logica |2 gtt | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 0 | 7 | |a Mathematische Logik |0 (DE-588)4037951-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Programmierlogik |0 (DE-588)4047408-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mathematische Logik |0 (DE-588)4037951-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Programmierlogik |0 (DE-588)4047408-2 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008107588&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-008107588 |
Datensatz im Suchindex
_version_ | 1804126575947415552 |
---|---|
adam_text | LOGIC FOR MATHEMATICS AND COMPUTER SCIENCE STANLEY N. BURRIS DEPARTMENT
OF PURE MATHEMATICS UNIVERSITY OF WATERLOO PRENTICE HALL UPPER SADDLE
RIVER, NEW JERSEY 07458 CONTENTS PREFACE XI THE FLOW OF TOPICS XVII PART
I QUANTIFIER-FREE LOGICS 1 CHAPTER 1 FROM ARISTOTLE TO BOOLE 3 1.1
SOPHISTRY 3 1.2 THE CONTRIBUTIONS OF ARISTOTLE 5 1.3 THE ALGEBRA OF
LOGIC 10 1.4 THE METHOD OF BOOLE, AND VENN DIAGRAMS 20 1.4.1 CHECKING
FOR VALIDITY 24 1.4.2 FINDING THE MOST GENERAL CONCLUSION 26 1.5
HISTORICAL REMARKS 29 CHAPTER 2 PROPOSITIONAL LOGIC 37 2.1 PROPOSITIONAL
CONNECTIVES, PROPOSITIONAL FORMULAS, AND TRUTH TABLES 37 2.1.1 DEFINING
PROPOSITIONAL FORMULAS 38 2.1.2 TRUTH TABLES 40 2.2 EQUIVALENT FORMULAS,
TAUTOLOGIES, AND CONTRADICTIONS 43 2.2.1 EQUIVALENT FORMULAS 43 2.2.2
TAUTOLOGIES 45 2.2.3 CONTRADICTIONS 45 2.3 SUBSTITUTION 46 2.4
REPLACEMENT 48 2.4.1 INDUCTION PROOFS ON FORMULAS 49 2.4.2 THE MAIN
RESULT ON REPLACEMENT 49 2.4.3 SIMPLIFICATION OF FORMULAS 51 2.5
ADEQUATE CONNECTIVES 52 V VI CONTENTS 2.5.1 THE ADEQUACY OF STANDARD
CONNECTIVES 52 2.5.2 PROVING ADEQUACY 53 2.5.3 PROVING INADEQUACY 55 2.6
DISJUNCTIVE AND CONJUNCTIVE FORMS 59 2.6.1 REWRITE RULES TO OBTAIN
NORMAL FORMS 60 2.6.2 USING TRUTH TABLES TO FIND NORMAL FORMS 62 2.6.3
UNIQUENESS OF NORMAL FORMS 64 2.7 VALID ARGUMENTS, TAUTOLOGIES, AND
SATISFIABILITY 65 2.8 COMPACTNESS 75 2.8.1 THE COMPACTNESS THEOREM FOR
PROPOSITIONAL LOGIC 75 2.8.2 APPLICATIONS OF COMPACTNESS 77 2.9 THE
PROPOSITIONAL PROOF SYSTEM PC 79 2.9.1 SIMPLE EQUIVALENCES 79 2.9.2 THE
PROOF SYSTEM 82 2.9.3 SOUNDNESS AND COMPLETENESS 85 2.9.4 DERIVATIONS
WITH PREMISSES 86 2.9.5 PROVING THEOREMS ABOUT H 91 2.9.6 GENERALIZED
SOUNDNESS AND COMPLETENESS 93 2.10 RESOLUTION 98 2.10.1 A MOTIVATION 98
2.10.2 CLAUSES 101 2.10.3 RESOLUTION 102 2.10.4 THE DAVIS-PUTNAM
PROCEDURE 103 2.10.5 SOUNDNESS AND COMPLETENESS FOR THE DPP 107 2.10.6
APPLICATIONS OF THE DPP 108 2.10.7 SOUNDNESS AND COMPLETENESS FOR
RESOLUTION 110 2.10.8 GENERALIZED SOUNDNESS AND COMPLETENESS FOR
RESOLUTION 111 2.11 HORN CLAUSES 114 2.12 GRAPH CLAUSES 116 2.13
PIGEONHOLE CLAUSES 118 2.14 HISTORICAL REMARKS 119 2.14.1 THE BEGINNINGS
120 2.14.2 STATEMENT LOGIC AND THE ALGEBRA OF LOGIC 120 2.14.3 FREGE S
WORK IGNORED 122 2.14.4 BERTRAND RUSSELL RESCUES FREGE S LOGIC 123
2.14.5 THE INFLUENCE OF PRINCIPIA 124 2.14.6 THE EMERGENCE OF TRUTH
TABLES, COMPLETENESS 126 2.14.7 THE HILBERT SCHOOL OF LOGIC 126 2.14.8
THE POLISH SCHOOL OF LOGIC 127 CONTENTS VII 2.14.9 OTHER PROPOSITIONAL
PROOF SYSTEMS 2.14.10 PROBLEMS WITH ALGORITHMS 2.14.11 REDUCTION TO
PROPOSITIONAL LOGIC 2.14.12 TESTING FOR SATISFIABILITY CHAPTER 3
EQUATIONAL LOGIC 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13
INTERPRETATIONS AND ALGEBRAS TERMS TERM FUNCTIONS 3.3.1 EVALUATION
TABLES EQUATIONS 3.4.1 THE SEMANTICS OF EQUATIONS 3.4.2 CLASSES OF
ALGEBRAS DEFINED BY EQUATIONS 3.4.3 THREE VERY BASIC PROPERTIES OF
EQUATIONS VALID ARGUMENTS SUBSTITUTION REPLACEMENT A PROOF SYSTEM FOR
EQUATIONAL LOGIC 3.8.1 BIRKHOFF S RULES 3.8.2 IS THERE A STRATEGY FOR
FINDING EQUATIONAL DERIVATIONS? SOUNDNESS COMPLETENESS 3.10.1 THE
CONSTRUCTION OF Z N 3.10.2 THE PROOF OF THE COMPLETENESS THEOREM 3.10.3
VALID ARGUMENTS REVISITED CHAIN DERIVATIONS UNIFICATION 3.12.1 UNIFIERS
3.12.2 A UNIFICATION ALGORITHM 3.12.3 PROPERTIES OF PREFIX NOTATION FOR
TERMS 3.12.4 NOTATION FOR SUBSTITUTIONS 3.12.5 VERIFICATION OF THE
UNIFICATION ALGORITHM 3.12.6 UNIFICATION OF FINITELY MANY TERMS TERM
REWRITE SYSTEMS (TRSS) 3.13.1 DEFINITION OF A TRS 3.13.2 TERMINATING
TRSS 3.13.3 NORMAL FORM TRSS 3.13.4 CRITICAL PAIRS 3.13.5 CRITICAL PAIRS
LEMMA 3.13.6 TERMS AS STRINGS 3.13.7 CONFLUENCE 128 129 130 130 133 134
140 145 145 149 149 153 158 161 168 171 175 175 178 183 183 183 184 185
187 189 190 191 196 198 201 206 207 208 209 211 214 223 225 228 VIII
CONTENTS 3.14 REDUCTION ORDERINGS 240 3.14.1 DEFINITION OF A REDUCTION
ORDERING 241 3.14.2 THE KNUTH-BENDIX ORDERINGS 242 3.14.3 POLYNOMIAL
ORDERINGS 247 3.15 THE KNUTH-BENDIX PROCEDURE 251 3.15.1 FINDING A
NORMAL FORM TRS FOR GROUPS 252 3.15.2 A FORMALIZATION OF THE
KNUTH-BENDIX PROCEDURE 255 3.16 HISTORICAL REMARKS 256 CHAPTER 4
PREDICATE CLAUSE LOGIC 261 4.1 FIRST-ORDER LANGUAGES WITHOUT EQUALITY
261 4.2 INTERPRETATIONS AND STRUCTURES 262 4.3 CLAUSES 264 4.4 SEMANTICS
267 4.5 REDUCTION TO PROPOSITIONAL LOGIC VIA GROUND CLAUSES, AND THE
COMPACTNESS THEOREM FOR CLAUSE LOGIC 272 4.5.1 GROUND INSTANCES 272
4.5.2 SATISFIABLE OVER AN ALGEBRA 274 4.5.3 THE HERBRAND UNIVERSE 277
4.5.4 GROWTH OF THE HERBRAND UNIVERSE 278 4.5.5 SATISFIABILITY OVER THE
HERBRAND UNIVERSE 280 4.5.6 COMPACTNESS FOR PREDICATE CLAUSE LOGIC
WITHOUT EQUALITY 283 4.6 RESOLUTION 284 4.6.1 SUBSTITUTION 284 4.6.2
OPP-UNIFICATION 285 4.6.3 RESOLUTION 286 4.6.4 SOUNDNESS AND
COMPLETENESS OF RESOLUTION 287 4.7 THE UNIFICATION OF LITERALS 288 4.7.1
UNIFYING PAIRS OF LITERALS 288 4.7.2 THE UNIFICATION ALGORITHM FOR PAIRS
OF LITERALS 290 4.7.3 MOST GENERAL UNIFIERS OF FINITELY MANY LITERALS
294 4.8 RESOLUTION WITH MOST GENERAL OPP-UNIFIERS 298 4.8.1 MOST GENERAL
OPP-UNIFIERS 298 4.8.2 AN OPP-UNIFICATION ALGORITHM 300 4.8.3 RESOLUTION
AND MOST GENERAL OPP-UNIFIERS 304 4.8.4 SOUNDNESS AND COMPLETENESS WITH
MOST GENERAL OPP-UNIFIERS 305 4.9 ADDING EQUALITY TO THE LANGUAGE 307
CONTENTS IX 4.10 REDUCTION TO PROPOSITIONAL LOGIC 308 4.10.1
AXIOMATIZING EQUALITY 308 4.10.2 THE REDUCTION 309 4.10.3 COMPACTNESS
FOR CLAUSE LOGIC WITH EQUALITY 312 4.10.4 SOUNDNESS AND COMPLETENESS 312
4.11 HISTORICAL REMARKS 313 PART II LOGIC WITH QUANTIFIERS 315 CHAPTER 5
FIRST*ORDER LOGIC: INTRODUCTION, AND FUNDAMENTAL RESULTS ON SEMANTICS
317 5.1 THE SYNTAX OF FIRST-ORDER LOGIC 318 5.2 FIRST-ORDER SYNTAX FOR
THE NATURAL NUMBERS 320 5.3 THE SEMANTICS OF FIRST-ORDER SENTENCES IN N
322 5.4 OTHER NUMBER SYSTEMS 329 5.5 FIRST-ORDER SYNTAX FOR (DIRECTED)
GRAPHS 332 5.6 THE SEMANTICS OF FIRST-ORDER SENTENCES IN (DIRECTED)
GRAPHS 334 5.7 SEMANTICS FOR FIRST-ORDER LOGIC 339 5.8 EQUIVALENT
FORMULAS 344 5.9 REPLACEMENT AND SUBSTITUTION 346 5.10 PRENEX FORM 349
5.11 VALID ARGUMENTS 352 5.12 SKOLEMIZING 353 5.13 THE REDUCTION OF
FIRST-ORDER LOGIC TO PREDICATE CLAUSE LOGIC 356 5.14 THE COMPACTNESS
THEOREM 362 5.15 HISTORICAL REMARKS 365 CHAPTER 6 A PROOF SYSTEM FOR
FIRST*ORDER LOGIC, AND GOEDEL S COMPLETENESS THEOREM 367 6.1 A PROOF
SYSTEM 367 6.2 FIRST FACTS ABOUT DERIVATIONS 369 6.3 HERBRAND S
DEDUCTION LEMMA 371 6.4 CONSISTENT SETS OF FORMULAS 374 6.5 MAXIMAL
CONSISTENT SETS OF FORMULAS 374 6.6 ADDING WITNESS FORMULAS TO A
CONSISTENT SENTENCE 376 X CONTENTS 6.7 CONSTRUCTING A MODEL USING A
MAXIMAL CONSISTENT SET OF FORMULAS WITH WITNESS FORMULAS 377 6.8
CONSISTENT SETS OF SENTENCES ARE SATISFIABLE 380 6.9 GOEDEL S
COMPLETENESS THEOREM 380 6.10 COMPACTNESS 381 6.11 HISTORICAL REMARKS
381 APPENDIX A A SIMPLE TIMETABLE OF MATHEMATICAL LOGIC AND COMPUTING
385 APPENDIX * THE DEDEKIND-PEANO NUMBER SYSTEM 391 APPENDIX * WRITING
UP AN INDUCTIVE DEFINITION OR PROOF 397 C.L INDUCTIVE DEFINITIONS 397
C.2 INDUCTIVE PROOFS 398 APPENDIX D THE FL PROPOSITIONAL LOGIC 401
BIBLIOGRAPHY 409 INDEX 413
|
any_adam_object | 1 |
author | Burris, Stanley |
author_facet | Burris, Stanley |
author_role | aut |
author_sort | Burris, Stanley |
author_variant | s b sb |
building | Verbundindex |
bvnumber | BV011981917 |
callnumber-first | Q - Science |
callnumber-label | QA9 |
callnumber-raw | QA9.B86 1998 |
callnumber-search | QA9.B86 1998 |
callnumber-sort | QA 19 B86 41998 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 130 |
ctrlnum | (OCoLC)36817154 (DE-599)BVBBV011981917 |
dewey-full | 511.321 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 21 511.3 |
dewey-search | 511.3 21 511.3 |
dewey-sort | 3511.3 221 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01544nam a2200421 c 4500</leader><controlfield tag="001">BV011981917</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19980915 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">980528s1998 xxud||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0132859742</subfield><subfield code="9">0-13-285974-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)36817154</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011981917</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA9.B86 1998</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3 21</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Burris, Stanley</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Logic for mathematics and computer science</subfield><subfield code="c">Stanley N. Burris</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Upper Saddle River, NJ</subfield><subfield code="b">Prentice Hall</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">420 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wiskundige logica</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Programmierlogik</subfield><subfield code="0">(DE-588)4047408-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Programmierlogik</subfield><subfield code="0">(DE-588)4047408-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008107588&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008107588</subfield></datafield></record></collection> |
id | DE-604.BV011981917 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:19:38Z |
institution | BVB |
isbn | 0132859742 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008107588 |
oclc_num | 36817154 |
open_access_boolean | |
owner | DE-739 DE-20 DE-521 DE-634 DE-11 DE-188 |
owner_facet | DE-739 DE-20 DE-521 DE-634 DE-11 DE-188 |
physical | 420 S. graph. Darst. |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Prentice Hall |
record_format | marc |
spelling | Burris, Stanley Verfasser aut Logic for mathematics and computer science Stanley N. Burris Upper Saddle River, NJ Prentice Hall 1998 420 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Wiskundige logica gtt Logic, Symbolic and mathematical Mathematische Logik (DE-588)4037951-6 gnd rswk-swf Programmierlogik (DE-588)4047408-2 gnd rswk-swf Mathematische Logik (DE-588)4037951-6 s DE-604 Programmierlogik (DE-588)4047408-2 s GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008107588&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Burris, Stanley Logic for mathematics and computer science Wiskundige logica gtt Logic, Symbolic and mathematical Mathematische Logik (DE-588)4037951-6 gnd Programmierlogik (DE-588)4047408-2 gnd |
subject_GND | (DE-588)4037951-6 (DE-588)4047408-2 |
title | Logic for mathematics and computer science |
title_auth | Logic for mathematics and computer science |
title_exact_search | Logic for mathematics and computer science |
title_full | Logic for mathematics and computer science Stanley N. Burris |
title_fullStr | Logic for mathematics and computer science Stanley N. Burris |
title_full_unstemmed | Logic for mathematics and computer science Stanley N. Burris |
title_short | Logic for mathematics and computer science |
title_sort | logic for mathematics and computer science |
topic | Wiskundige logica gtt Logic, Symbolic and mathematical Mathematische Logik (DE-588)4037951-6 gnd Programmierlogik (DE-588)4047408-2 gnd |
topic_facet | Wiskundige logica Logic, Symbolic and mathematical Mathematische Logik Programmierlogik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008107588&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT burrisstanley logicformathematicsandcomputerscience |