Initial approximations and root finding methods:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Wiley-VCH
1998
|
Ausgabe: | 1. ed. |
Schriftenreihe: | Mathematical research
104 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 180 S. Ill., graph. Darst. |
ISBN: | 3527401326 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV011933559 | ||
003 | DE-604 | ||
005 | 19981211 | ||
007 | t | ||
008 | 980505s1998 gw ad|| |||| 00||| eng d | ||
020 | |a 3527401326 |c Pb. : ca. DM 128.00 |9 3-527-40132-6 | ||
035 | |a (OCoLC)845070099 | ||
035 | |a (DE-599)BVBBV011933559 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-739 |a DE-703 |a DE-824 |a DE-706 |a DE-634 |a DE-11 | ||
082 | 0 | |a 512.942 | |
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
084 | |a SK 910 |0 (DE-625)143270: |2 rvk | ||
100 | 1 | |a Kjurkčiev, Nikolaj V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Initial approximations and root finding methods |c Nikolay V. Kyurkchiev |
250 | |a 1. ed. | ||
264 | 1 | |a Berlin [u.a.] |b Wiley-VCH |c 1998 | |
300 | |a 180 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Mathematical research |v 104 | |
650 | 0 | 7 | |a Polynom |0 (DE-588)4046711-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nullstelle |0 (DE-588)4140515-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Polynom |0 (DE-588)4046711-9 |D s |
689 | 0 | 1 | |a Nullstelle |0 (DE-588)4140515-8 |D s |
689 | 0 | 2 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Mathematical research |v 104 |w (DE-604)BV000008585 |9 104 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008066589&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-008066589 |
Datensatz im Suchindex
_version_ | 1804126520974770176 |
---|---|
adam_text | Contents
Chapter 1. Computation of polynomial zeros 9
1.1 The Weierstrass method 9
1.2 Behavior of the (W D) sequence. Local convergence theorems 10
1.3 Global convergence theorems 17
1.4 New results. An effective formulation of the (W D) method 19
1.5 Numerical examples 31
1.6 References 34
Chapter 2. Generalized root iteration 37
2.1 The Weierstrass corrections. Nourein s method 37
2.2 The (W D) method with raised speed of convergence 43
2.3 Initial approximations 49
2.4 References 53
Chapter 3. Recursively generated iterative methods 55
3.1 Iterative method based on the Euler Chebyshev algorithm 55
3.2 A family of parallel iterations for finding all roots 58
3.3 Initial conditions in the Wang Zheng method 61
3.4 References 70
Chapter 4. Two sided and multi point methods 71
4.1 On a class of multi point methods for solving equations 71
4.2 The parallel Alefeld Herzberger method 75
4.3 An iteration function of incommensurate order 79
4.4 References 83
Chapter 5. Factorization of a polynomial 85
5.1 Splitting factors of polynomials 85
5.2 The Dvorcuk method 87
5.3 Convergence theorem 88
5.4 Behavior of the Dvorcuk sequence 89
5.5 Initial approximations 90
5.6 A modification with rate of convergence R + 2 92
5.7 Some properties of a parallel method for factorization 98
8 Contents
5.8 References 105
Chapter 6. On some methods for the determination of all zeros 107
6.1 Chebyshev s and Halley s methods 108
6.2 Convergence theorems for some known methods 112
6.3 Convergence of SOR like methods 114
6.4 Numerical examples 116
6.5 References 130
Chapter 7. On the zeros of polynomials 131
7.1 Location of the zeros 131
7.2 Estimation of the unique positive root 135
7.3 Localization of all positive roots 141
7.4 References 143
Chapter 8. Contraction of the SOR Weierstrass method 145
8.1 Contraction of the generalized SOR method 145
8.2 Distribution of the critical points of Weierstrass1 method 150
8.3 The TSSOR Weierstrass method 152
8.4 References 158
Chapter 9. On the critical points of Aberth s method 159
9.1 Aberth s method 159
9.2 A modification with rate of convergence 2R + 3 162
9.3 Numerical examples 157
9.4 References 171
Chapter 10. A note on the Le Verrier Fadeev method 173
10.1 The Le Verrier method in terms of the Weierstrass method 173
10.2 Remarks 175
Subject index 179
|
any_adam_object | 1 |
author | Kjurkčiev, Nikolaj V. |
author_facet | Kjurkčiev, Nikolaj V. |
author_role | aut |
author_sort | Kjurkčiev, Nikolaj V. |
author_variant | n v k nv nvk |
building | Verbundindex |
bvnumber | BV011933559 |
classification_rvk | SK 230 SK 910 |
ctrlnum | (OCoLC)845070099 (DE-599)BVBBV011933559 |
dewey-full | 512.942 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.942 |
dewey-search | 512.942 |
dewey-sort | 3512.942 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01681nam a2200433 cb4500</leader><controlfield tag="001">BV011933559</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19981211 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">980505s1998 gw ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527401326</subfield><subfield code="c">Pb. : ca. DM 128.00</subfield><subfield code="9">3-527-40132-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)845070099</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011933559</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.942</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 910</subfield><subfield code="0">(DE-625)143270:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kjurkčiev, Nikolaj V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Initial approximations and root finding methods</subfield><subfield code="c">Nikolay V. Kyurkchiev</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">180 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematical research</subfield><subfield code="v">104</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nullstelle</subfield><subfield code="0">(DE-588)4140515-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nullstelle</subfield><subfield code="0">(DE-588)4140515-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematical research</subfield><subfield code="v">104</subfield><subfield code="w">(DE-604)BV000008585</subfield><subfield code="9">104</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008066589&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008066589</subfield></datafield></record></collection> |
id | DE-604.BV011933559 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:18:46Z |
institution | BVB |
isbn | 3527401326 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008066589 |
oclc_num | 845070099 |
open_access_boolean | |
owner | DE-739 DE-703 DE-824 DE-706 DE-634 DE-11 |
owner_facet | DE-739 DE-703 DE-824 DE-706 DE-634 DE-11 |
physical | 180 S. Ill., graph. Darst. |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Wiley-VCH |
record_format | marc |
series | Mathematical research |
series2 | Mathematical research |
spelling | Kjurkčiev, Nikolaj V. Verfasser aut Initial approximations and root finding methods Nikolay V. Kyurkchiev 1. ed. Berlin [u.a.] Wiley-VCH 1998 180 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Mathematical research 104 Polynom (DE-588)4046711-9 gnd rswk-swf Nullstelle (DE-588)4140515-8 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Polynom (DE-588)4046711-9 s Nullstelle (DE-588)4140515-8 s Numerisches Verfahren (DE-588)4128130-5 s DE-604 Mathematical research 104 (DE-604)BV000008585 104 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008066589&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kjurkčiev, Nikolaj V. Initial approximations and root finding methods Mathematical research Polynom (DE-588)4046711-9 gnd Nullstelle (DE-588)4140515-8 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
subject_GND | (DE-588)4046711-9 (DE-588)4140515-8 (DE-588)4128130-5 |
title | Initial approximations and root finding methods |
title_auth | Initial approximations and root finding methods |
title_exact_search | Initial approximations and root finding methods |
title_full | Initial approximations and root finding methods Nikolay V. Kyurkchiev |
title_fullStr | Initial approximations and root finding methods Nikolay V. Kyurkchiev |
title_full_unstemmed | Initial approximations and root finding methods Nikolay V. Kyurkchiev |
title_short | Initial approximations and root finding methods |
title_sort | initial approximations and root finding methods |
topic | Polynom (DE-588)4046711-9 gnd Nullstelle (DE-588)4140515-8 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
topic_facet | Polynom Nullstelle Numerisches Verfahren |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008066589&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000008585 |
work_keys_str_mv | AT kjurkcievnikolajv initialapproximationsandrootfindingmethods |