Intuitionistic set theory or how to construct a proof: 2
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hamburg
Kovač
(1998)
|
Schriftenreihe: | Schriftenreihe Forschungsergebnisse zur Informatik
33,[2] |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | III, 313 S. |
ISBN: | 3860646176 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV011920937 | ||
003 | DE-604 | ||
005 | 19981228 | ||
007 | t | ||
008 | 980506s1998 gw |||| 00||| eng d | ||
016 | 7 | |a 950646563 |2 DE-101 | |
020 | |a 3860646176 |9 3-86064-617-6 | ||
035 | |a (OCoLC)40220662 | ||
035 | |a (DE-599)BVBBV011920937 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-HH | ||
049 | |a DE-19 |a DE-521 | ||
050 | 0 | |a QA248 | |
082 | 0 | |a 511.3/22 |2 21 | |
084 | |a SK 150 |0 (DE-625)143218: |2 rvk | ||
100 | 1 | |a Kuck, Conrad |e Verfasser |4 aut | |
245 | 1 | 0 | |a Intuitionistic set theory or how to construct a proof |n 2 |c Conrad Kuck |
264 | 1 | |a Hamburg |b Kovač |c (1998) | |
300 | |a III, 313 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Schriftenreihe Forschungsergebnisse zur Informatik |v 33,[2] | |
490 | 0 | |a Schriftenreihe Forschungsergebnisse zur Informatik |v 33 | |
650 | 4 | |a Proof theory | |
650 | 4 | |a Set theory | |
773 | 0 | 8 | |w (DE-604)BV011920896 |g 2 |
830 | 0 | |a Schriftenreihe Forschungsergebnisse zur Informatik |v 33,[2] |w (DE-604)BV011588474 |9 33,2 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008058497&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
Datensatz im Suchindex
_version_ | 1805068067059793920 |
---|---|
adam_text |
CONTENTS
9.
TREES
AND
PARTITIONS
2
9.1
TREES
2
9.2
THE
LEXICOGRAPHICAL
ORDERING
OF
ZERO-ONE
SEQUENCES
770,1
10
9.3
KONIG
'
S
INFINITY
LEMMA
17
9.4
ARONSZAJN
'
S
TREES
(PROOFS)
24
9.5
SOUSLIN
TREES
DO
NOT
EXIST
29
9.6
SOME
PARTITION
THEOREMS
(INTO
DISJOINT
SETS
OF
BASIS-VECTORS)
29
10.
INACCESSIBLE
CARDINALS
YY
43
10.1
NORMAL
FUNCTIONS
AND
STATIONARY
SETS
43
10.2
WEAKLY
AND
STRONGLY
INACCESSIBLE
CARDINALS
55
10.3
A
DIGRESSION
ON
MODELS
(SCIENTIFIC
LANGUAGES)
OF
X)
0
[T.R]
61
10.4
WEAKLY
INACCESSIBLE
NUMBERS
72
10.5
THE
WEAKLY
COMPACT
CARDINAL
C
74
10.6
MEASURABLE
CARDINALS
79
10.7
MEASURABLE
CARDINALS
AND
REDUCED
PRODUCTS
91
11.
AUXILIARY
NOTIONS
94
11.1
THE
NOTION
OF
A
METRIC
SPACE.
VARIOUS
FUNDAMENTAL
TOPOLOGICAL
NOTIONS
94
11.2
EXPONENTIAL
TOPOLOGY,
COMPACT-OPEN
TOPOLOGY
109
11.3
COMPLETE
AND
POLISH
SPACES
112
11.4
LEBESGUE-MEASURABLE
(L-MEASURABLE)
MAPPINGS
121
11.5
THE
OPERATION
A
(SEE
LUSIN
AND
SOUSLIN)
139
11.6
THE
LUSIN
SIEVE
148
12.
BOREL
SETS,
B-MEASURABLE
FUNCTIONS,
BAIRE
PROPERTY
152
12.1
ELEMENTARY
PROPERTIES
OF
BOREL
SUBSETS
OF
A
METRIC
SPACE
152
12.2
AMBIGUOUS
(MEHRDEUTIGE)
BOREL
SETS
(CST)
157
12.3
BOREL-MEASURABLE
FUNCTIONS
163
12.4
B-MEASURABLE
COMPLEX
AND
PRODUCT
FUNCTIONS
FOR
THE
CONSTRUCTION
OF
PRIME-ELEMENTS
167
12.5
UNIVERSAL
FUNCTIONS
FOR
BOREL
CLASSES
170
12.6
BOREL
SUBSETS
OF POLISH
SPACES
175
12.7
FURTHER
PROPERTIES
OF
BOREL
SETS
177
12.8
BAIRE
PROPERTY
178
13.
SOUSLIN
SPACE,
PROJECTIVE
SETS
191
13.1
SOUSLIN
SPACES,
FUNDAMENTAL
PROPERTIES
191
13.2
APPLICATIONS
OF
COUNTABLE
ORDER
TYPES
U O
TO
SOUSLIN
SPACES
215
13.3
COANALYTIC
SETS
(C.4-SETS)
225
13.4
THE
CR-ALGEBRA
S
GENERATED
BY
SOUSLIN
SETS
AND
THE
S-MEASURABLE
MAPPINGS
235
13.5
THE
PCA-SETS
AND
SETS
OF HIGHER
PROJECTIVE
CLASSES
245
14.
MEASURABLE
SELECTORS
249
14.1
THE
GENERAL
SELECTOR
THEOREM
AND
ITS
CONSEQUENCES
251
14.2
SELECTORS
FOR
MEASURABLE
PARTITIONS
OF
POLISH
SPACES
265
14.3
SELECTORS
FOR
'
'
POINT-INVERSES
"
OF
CONTINUOUS
MAPPINGS
274 |
any_adam_object | 1 |
author | Kuck, Conrad |
author_facet | Kuck, Conrad |
author_role | aut |
author_sort | Kuck, Conrad |
author_variant | c k ck |
building | Verbundindex |
bvnumber | BV011920937 |
callnumber-first | Q - Science |
callnumber-label | QA248 |
callnumber-raw | QA248 |
callnumber-search | QA248 |
callnumber-sort | QA 3248 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 150 |
ctrlnum | (OCoLC)40220662 (DE-599)BVBBV011920937 |
dewey-full | 511.3/22 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/22 |
dewey-search | 511.3/22 |
dewey-sort | 3511.3 222 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cc4500</leader><controlfield tag="001">BV011920937</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19981228</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">980506s1998 gw |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">950646563</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3860646176</subfield><subfield code="9">3-86064-617-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)40220662</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011920937</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-HH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-521</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA248</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/22</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 150</subfield><subfield code="0">(DE-625)143218:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kuck, Conrad</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Intuitionistic set theory or how to construct a proof</subfield><subfield code="n">2</subfield><subfield code="c">Conrad Kuck</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hamburg</subfield><subfield code="b">Kovač</subfield><subfield code="c">(1998)</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">III, 313 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Schriftenreihe Forschungsergebnisse zur Informatik</subfield><subfield code="v">33,[2]</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Schriftenreihe Forschungsergebnisse zur Informatik</subfield><subfield code="v">33</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proof theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set theory</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV011920896</subfield><subfield code="g">2</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Schriftenreihe Forschungsergebnisse zur Informatik</subfield><subfield code="v">33,[2]</subfield><subfield code="w">(DE-604)BV011588474</subfield><subfield code="9">33,2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008058497&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield></record></collection> |
id | DE-604.BV011920937 |
illustrated | Not Illustrated |
indexdate | 2024-07-20T03:44:14Z |
institution | BVB |
isbn | 3860646176 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008058497 |
oclc_num | 40220662 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-521 |
owner_facet | DE-19 DE-BY-UBM DE-521 |
physical | III, 313 S. |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Kovač |
record_format | marc |
series | Schriftenreihe Forschungsergebnisse zur Informatik |
series2 | Schriftenreihe Forschungsergebnisse zur Informatik |
spelling | Kuck, Conrad Verfasser aut Intuitionistic set theory or how to construct a proof 2 Conrad Kuck Hamburg Kovač (1998) III, 313 S. txt rdacontent n rdamedia nc rdacarrier Schriftenreihe Forschungsergebnisse zur Informatik 33,[2] Schriftenreihe Forschungsergebnisse zur Informatik 33 Proof theory Set theory (DE-604)BV011920896 2 Schriftenreihe Forschungsergebnisse zur Informatik 33,[2] (DE-604)BV011588474 33,2 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008058497&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kuck, Conrad Intuitionistic set theory or how to construct a proof Schriftenreihe Forschungsergebnisse zur Informatik Proof theory Set theory |
title | Intuitionistic set theory or how to construct a proof |
title_auth | Intuitionistic set theory or how to construct a proof |
title_exact_search | Intuitionistic set theory or how to construct a proof |
title_full | Intuitionistic set theory or how to construct a proof 2 Conrad Kuck |
title_fullStr | Intuitionistic set theory or how to construct a proof 2 Conrad Kuck |
title_full_unstemmed | Intuitionistic set theory or how to construct a proof 2 Conrad Kuck |
title_short | Intuitionistic set theory or how to construct a proof |
title_sort | intuitionistic set theory or how to construct a proof |
topic | Proof theory Set theory |
topic_facet | Proof theory Set theory |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008058497&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV011920896 (DE-604)BV011588474 |
work_keys_str_mv | AT kuckconrad intuitionisticsettheoryorhowtoconstructaproof2 |