Space optimal computation of normal forms of polynomials:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | German |
Veröffentlicht: |
Aachen
Shaker
1998
|
Ausgabe: | Als Ms. gedr. |
Schriftenreihe: | Berichte aus der Informatik
|
Schlagworte: | |
Beschreibung: | 129 S. |
ISBN: | 3826535766 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV011864875 | ||
003 | DE-604 | ||
005 | 19981029 | ||
007 | t | ||
008 | 980323s1998 gw m||| 00||| ger d | ||
020 | |a 3826535766 |c Pb. : DM 89.00, sfr 89.00, S 619.00 |9 3-8265-3576-6 | ||
035 | |a (OCoLC)644556099 | ||
035 | |a (DE-599)BVBBV011864875 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-91 |a DE-91G |a DE-12 |a DE-634 | ||
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
084 | |a DAT 535d |2 stub | ||
084 | |a MAT 266d |2 stub | ||
100 | 1 | |a Kühnle, Klaus |e Verfasser |4 aut | |
245 | 1 | 0 | |a Space optimal computation of normal forms of polynomials |c Klaus Kühnle |
250 | |a Als Ms. gedr. | ||
264 | 1 | |a Aachen |b Shaker |c 1998 | |
300 | |a 129 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Berichte aus der Informatik | |
502 | |a Zugl.: München, Techn. Univ., Diss., 1998 | ||
650 | 0 | 7 | |a Gröbner-Basis |0 (DE-588)4276378-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Polynom |0 (DE-588)4046711-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ideal |g Mathematik |0 (DE-588)4161198-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algorithmus |0 (DE-588)4001183-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computeralgebra |0 (DE-588)4010449-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Normalform |0 (DE-588)4172025-8 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Polynom |0 (DE-588)4046711-9 |D s |
689 | 0 | 1 | |a Normalform |0 (DE-588)4172025-8 |D s |
689 | 0 | 2 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Polynom |0 (DE-588)4046711-9 |D s |
689 | 1 | 1 | |a Normalform |0 (DE-588)4172025-8 |D s |
689 | 1 | 2 | |a Computeralgebra |0 (DE-588)4010449-7 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Ideal |g Mathematik |0 (DE-588)4161198-6 |D s |
689 | 2 | 1 | |a Gröbner-Basis |0 (DE-588)4276378-2 |D s |
689 | 2 | 2 | |a Computeralgebra |0 (DE-588)4010449-7 |D s |
689 | 2 | |5 DE-604 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-008015956 |
Datensatz im Suchindex
_version_ | 1804126452058161152 |
---|---|
any_adam_object | |
author | Kühnle, Klaus |
author_facet | Kühnle, Klaus |
author_role | aut |
author_sort | Kühnle, Klaus |
author_variant | k k kk |
building | Verbundindex |
bvnumber | BV011864875 |
classification_rvk | SK 230 |
classification_tum | DAT 535d MAT 266d |
ctrlnum | (OCoLC)644556099 (DE-599)BVBBV011864875 |
discipline | Informatik Mathematik |
edition | Als Ms. gedr. |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01990nam a2200565 c 4500</leader><controlfield tag="001">BV011864875</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19981029 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">980323s1998 gw m||| 00||| ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3826535766</subfield><subfield code="c">Pb. : DM 89.00, sfr 89.00, S 619.00</subfield><subfield code="9">3-8265-3576-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)644556099</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011864875</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 535d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 266d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kühnle, Klaus</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Space optimal computation of normal forms of polynomials</subfield><subfield code="c">Klaus Kühnle</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Als Ms. gedr.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Aachen</subfield><subfield code="b">Shaker</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">129 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Berichte aus der Informatik</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="a">Zugl.: München, Techn. Univ., Diss., 1998</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gröbner-Basis</subfield><subfield code="0">(DE-588)4276378-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ideal</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4161198-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Normalform</subfield><subfield code="0">(DE-588)4172025-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Normalform</subfield><subfield code="0">(DE-588)4172025-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Normalform</subfield><subfield code="0">(DE-588)4172025-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Ideal</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4161198-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Gröbner-Basis</subfield><subfield code="0">(DE-588)4276378-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008015956</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV011864875 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:17:40Z |
institution | BVB |
isbn | 3826535766 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008015956 |
oclc_num | 644556099 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-12 DE-634 |
owner_facet | DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-12 DE-634 |
physical | 129 S. |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Shaker |
record_format | marc |
series2 | Berichte aus der Informatik |
spelling | Kühnle, Klaus Verfasser aut Space optimal computation of normal forms of polynomials Klaus Kühnle Als Ms. gedr. Aachen Shaker 1998 129 S. txt rdacontent n rdamedia nc rdacarrier Berichte aus der Informatik Zugl.: München, Techn. Univ., Diss., 1998 Gröbner-Basis (DE-588)4276378-2 gnd rswk-swf Polynom (DE-588)4046711-9 gnd rswk-swf Ideal Mathematik (DE-588)4161198-6 gnd rswk-swf Algorithmus (DE-588)4001183-5 gnd rswk-swf Computeralgebra (DE-588)4010449-7 gnd rswk-swf Normalform (DE-588)4172025-8 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Polynom (DE-588)4046711-9 s Normalform (DE-588)4172025-8 s Algorithmus (DE-588)4001183-5 s DE-604 Computeralgebra (DE-588)4010449-7 s Ideal Mathematik (DE-588)4161198-6 s Gröbner-Basis (DE-588)4276378-2 s |
spellingShingle | Kühnle, Klaus Space optimal computation of normal forms of polynomials Gröbner-Basis (DE-588)4276378-2 gnd Polynom (DE-588)4046711-9 gnd Ideal Mathematik (DE-588)4161198-6 gnd Algorithmus (DE-588)4001183-5 gnd Computeralgebra (DE-588)4010449-7 gnd Normalform (DE-588)4172025-8 gnd |
subject_GND | (DE-588)4276378-2 (DE-588)4046711-9 (DE-588)4161198-6 (DE-588)4001183-5 (DE-588)4010449-7 (DE-588)4172025-8 (DE-588)4113937-9 |
title | Space optimal computation of normal forms of polynomials |
title_auth | Space optimal computation of normal forms of polynomials |
title_exact_search | Space optimal computation of normal forms of polynomials |
title_full | Space optimal computation of normal forms of polynomials Klaus Kühnle |
title_fullStr | Space optimal computation of normal forms of polynomials Klaus Kühnle |
title_full_unstemmed | Space optimal computation of normal forms of polynomials Klaus Kühnle |
title_short | Space optimal computation of normal forms of polynomials |
title_sort | space optimal computation of normal forms of polynomials |
topic | Gröbner-Basis (DE-588)4276378-2 gnd Polynom (DE-588)4046711-9 gnd Ideal Mathematik (DE-588)4161198-6 gnd Algorithmus (DE-588)4001183-5 gnd Computeralgebra (DE-588)4010449-7 gnd Normalform (DE-588)4172025-8 gnd |
topic_facet | Gröbner-Basis Polynom Ideal Mathematik Algorithmus Computeralgebra Normalform Hochschulschrift |
work_keys_str_mv | AT kuhnleklaus spaceoptimalcomputationofnormalformsofpolynomials |