Fatou type theorems: maximal functions and approach regions
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Boston, Mass. ; Basel ; Berlin
Birkhäuser
1998
|
Schriftenreihe: | Progress in Mathematics
147 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverzeichnis Seiten 135 - 148 |
Beschreibung: | VIII, 152 Seiten graph. Darst. |
ISBN: | 3764339764 0817639764 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV011776392 | ||
003 | DE-604 | ||
005 | 20210514 | ||
007 | t | ||
008 | 980210s1998 gw d||| |||| 00||| ger d | ||
016 | 7 | |a 952740729 |2 DE-101 | |
020 | |a 3764339764 |c (Basel ...) Pp. : sfr 78.00 |9 3-7643-3976-4 | ||
020 | |a 0817639764 |c (Boston) Pp. |9 0-8176-3976-4 | ||
035 | |a (OCoLC)634243920 | ||
035 | |a (DE-599)BVBBV011776392 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-20 |a DE-188 | ||
084 | |a SK 780 |0 (DE-625)143255: |2 rvk | ||
100 | 1 | |a Di Biase, Fausto |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fatou type theorems |b maximal functions and approach regions |c Fausto Di Biase |
264 | 1 | |a Boston, Mass. ; Basel ; Berlin |b Birkhäuser |c 1998 | |
300 | |a VIII, 152 Seiten |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Progress in Mathematics |v 147 | |
500 | |a Literaturverzeichnis Seiten 135 - 148 | ||
650 | 0 | 7 | |a Holomorphe Funktion |0 (DE-588)4025645-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Randverhalten |0 (DE-588)4300459-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrere komplexe Variable |0 (DE-588)4169285-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Holomorphe Funktion |0 (DE-588)4025645-5 |D s |
689 | 0 | 1 | |a Mehrere komplexe Variable |0 (DE-588)4169285-8 |D s |
689 | 0 | 2 | |a Randverhalten |0 (DE-588)4300459-3 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Progress in Mathematics |v 147 |w (DE-604)BV000004120 |9 147 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007947689&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-007947689 |
Datensatz im Suchindex
_version_ | 1804126319584215040 |
---|---|
adam_text | Contents
Preface vii
I Background 1
1 Prelude 3
1.1 The Unit Disc 3
1.2 Spaces of Homogeneous Type 16
1.3 Euclidean Half Spaces 18
1.4 Maximal Operators and Convergence 24
2 Preliminary Results 27
2.1 Approach Regions 27
2.2 The Nagel Stein Approach Regions 43
2.3 Goals, Problems and Results 51
3 The Geometric Contexts 55
3.1 NTA Domains in Rn 55
3.2 Domains in C 59
3.3 Trees 73
II Exotic Approach Regions 85
4 Approach Regions for Trees 87
4.1 The Dyadic Tree 87
4.2 The General Tree 88
5 Embedded Trees 99
5.1 The Unit Disc 99
5.2 Quasi Dyadic Decompositions 104
5.3 The Maximal Decomposition of a Ball 108
vi CONTENTS
5.4 Admissible Embeddings 110
6 Applications 123
6.1 Euclidean Half Spaces 124
6.2 NTA Domains in W1 124
6.3 Finite Type Domains in C2 125
6.4 Strongly Pseudoconvex Domains in C 128
Notes 129
List of Figures 131
Guide to Notation 133
Bibliography 135
Index 149
|
any_adam_object | 1 |
author | Di Biase, Fausto |
author_facet | Di Biase, Fausto |
author_role | aut |
author_sort | Di Biase, Fausto |
author_variant | b f d bf bfd |
building | Verbundindex |
bvnumber | BV011776392 |
classification_rvk | SK 780 |
ctrlnum | (OCoLC)634243920 (DE-599)BVBBV011776392 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01774nam a2200433 cb4500</leader><controlfield tag="001">BV011776392</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210514 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">980210s1998 gw d||| |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">952740729</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764339764</subfield><subfield code="c">(Basel ...) Pp. : sfr 78.00</subfield><subfield code="9">3-7643-3976-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817639764</subfield><subfield code="c">(Boston) Pp.</subfield><subfield code="9">0-8176-3976-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)634243920</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011776392</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 780</subfield><subfield code="0">(DE-625)143255:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Di Biase, Fausto</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fatou type theorems</subfield><subfield code="b">maximal functions and approach regions</subfield><subfield code="c">Fausto Di Biase</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, Mass. ; Basel ; Berlin</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 152 Seiten</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">147</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverzeichnis Seiten 135 - 148</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Holomorphe Funktion</subfield><subfield code="0">(DE-588)4025645-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randverhalten</subfield><subfield code="0">(DE-588)4300459-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrere komplexe Variable</subfield><subfield code="0">(DE-588)4169285-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Holomorphe Funktion</subfield><subfield code="0">(DE-588)4025645-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrere komplexe Variable</subfield><subfield code="0">(DE-588)4169285-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Randverhalten</subfield><subfield code="0">(DE-588)4300459-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in Mathematics</subfield><subfield code="v">147</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">147</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007947689&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007947689</subfield></datafield></record></collection> |
id | DE-604.BV011776392 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:15:34Z |
institution | BVB |
isbn | 3764339764 0817639764 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007947689 |
oclc_num | 634243920 |
open_access_boolean | |
owner | DE-20 DE-188 |
owner_facet | DE-20 DE-188 |
physical | VIII, 152 Seiten graph. Darst. |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Birkhäuser |
record_format | marc |
series | Progress in Mathematics |
series2 | Progress in Mathematics |
spelling | Di Biase, Fausto Verfasser aut Fatou type theorems maximal functions and approach regions Fausto Di Biase Boston, Mass. ; Basel ; Berlin Birkhäuser 1998 VIII, 152 Seiten graph. Darst. txt rdacontent n rdamedia nc rdacarrier Progress in Mathematics 147 Literaturverzeichnis Seiten 135 - 148 Holomorphe Funktion (DE-588)4025645-5 gnd rswk-swf Randverhalten (DE-588)4300459-3 gnd rswk-swf Mehrere komplexe Variable (DE-588)4169285-8 gnd rswk-swf Holomorphe Funktion (DE-588)4025645-5 s Mehrere komplexe Variable (DE-588)4169285-8 s Randverhalten (DE-588)4300459-3 s DE-604 Progress in Mathematics 147 (DE-604)BV000004120 147 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007947689&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Di Biase, Fausto Fatou type theorems maximal functions and approach regions Progress in Mathematics Holomorphe Funktion (DE-588)4025645-5 gnd Randverhalten (DE-588)4300459-3 gnd Mehrere komplexe Variable (DE-588)4169285-8 gnd |
subject_GND | (DE-588)4025645-5 (DE-588)4300459-3 (DE-588)4169285-8 |
title | Fatou type theorems maximal functions and approach regions |
title_auth | Fatou type theorems maximal functions and approach regions |
title_exact_search | Fatou type theorems maximal functions and approach regions |
title_full | Fatou type theorems maximal functions and approach regions Fausto Di Biase |
title_fullStr | Fatou type theorems maximal functions and approach regions Fausto Di Biase |
title_full_unstemmed | Fatou type theorems maximal functions and approach regions Fausto Di Biase |
title_short | Fatou type theorems |
title_sort | fatou type theorems maximal functions and approach regions |
title_sub | maximal functions and approach regions |
topic | Holomorphe Funktion (DE-588)4025645-5 gnd Randverhalten (DE-588)4300459-3 gnd Mehrere komplexe Variable (DE-588)4169285-8 gnd |
topic_facet | Holomorphe Funktion Randverhalten Mehrere komplexe Variable |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007947689&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000004120 |
work_keys_str_mv | AT dibiasefausto fatoutypetheoremsmaximalfunctionsandapproachregions |