Principles of abrasive water jet machining:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
London [u.a.]
Springer
1998
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXV, 394 S. Ill., graph. Darst. |
ISBN: | 3540762396 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV011753604 | ||
003 | DE-604 | ||
005 | 20011214 | ||
007 | t | ||
008 | 980127s1998 gw ad|| |||| 00||| ger d | ||
016 | 7 | |a 952699877 |2 DE-101 | |
020 | |a 3540762396 |9 3-540-76239-6 | ||
035 | |a (OCoLC)38289148 | ||
035 | |a (DE-599)BVBBV011753604 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-703 |a DE-91G |a DE-83 | ||
050 | 0 | |a TJ840 | |
082 | 0 | |a 621.9/3 |2 21 | |
084 | |a ZM 8330 |0 (DE-625)157186: |2 rvk | ||
084 | |a ZM 8345 |0 (DE-625)157188: |2 rvk | ||
084 | |a FER 789f |2 stub | ||
100 | 1 | |a Momber, Andreas |d 1959- |e Verfasser |0 (DE-588)118092464 |4 aut | |
245 | 1 | 0 | |a Principles of abrasive water jet machining |c Andreas W. Momber and Radovan Kovacevic |
264 | 1 | |a London [u.a.] |b Springer |c 1998 | |
300 | |a XXV, 394 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Water jet cutting | |
650 | 0 | 7 | |a Wasserstrahlschneiden |0 (DE-588)4192673-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wasserstrahlschneiden |0 (DE-588)4192673-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Kovacevic, Radovan |d 1947- |e Verfasser |0 (DE-588)118092448 |4 aut | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007931410&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-007931410 |
Datensatz im Suchindex
_version_ | 1807594049540980736 |
---|---|
adam_text |
TABLE
OF
CONTENTS
PREFACE
.
V
NOMENCLATURE
.
VII
1
INTRODUCTION
.
1
1.2
CLASSIFICATION
OF
HIGH-SPEED
FLUID
JETS
.
1
1.3
STATE-OF-THE-ART
APPLICATION
OF
THE
WATER-JET
TECHNIQUE
.
2
2
CLASSIFICATION
AND
CHARACTERIZATION
OF
ABRASIVE
MATERIALS
.
5
2.1
CLASSIFICATION
AND
PROPERTIES
OF
ABRASIVE
MATERIALS
.
5
2.1.1
GENERAL
CLASSIFICATION
OF
ABRASIVE
MATERIALS
.
5
2.1.2
GLOBAL
ABRASIVE-EVALUATION
PARAMETER
.
5
2.2
ABRASIVE-MATERIAL
STRUCTURE
AND
HARDNESS
.
7
2.2.1
STRUCTURAL
ASPECTS
OF
ABRASIVE
MATERIALS
.
7
2.2.2
HARDNESS
OF
ABRASIVE
MATERIALS
.
7
2.3
ABRASIVE-PARTICLE
SHAPE
PARAMETERS
.
10
2.3.1
RELATIVE
PROPORTIONS
OF
ABRASIVE
PARTICLES
.
10
2.3.2
GEOMETRICAL
FORM
OF
PARTICLES
.
11
2.4
ABRASIVE-PARTICLE
SIZE
DISTRIBUTION
AND
ABRASIVE-PARTICLE
DIAMETER
.
13
2.4.1
PARTICLE-SIZE
DISTRIBUTION
.
13
2.4.1.1
GENERAL
DEFINITIONS
.
13
2.4.1.2
SIEVE
ANALYSIS
.
14
2.4.1.3
PARTICLE-SIZE
DISTRIBUTION
MODELS
.
15
2.
4.2
'
A
VERAGE
'
PARTICLE
DIAMETER
.
16
2.5
NUMBER
AND
KINETIC
ENERGY
OF
ABRASIVE
PARTICLES
.
17
2.5.1
ABRASIVE-PARTICLE
NUMBER
AND
FREQUENCY
.
17
2.5.2
KINETIC
ENERGY
OF
ABRASIVE
PARTICLES
.
18
3
GENERATION
OF
ABRASIVE
WATER
JETS
.
20
3.1
PROPERTIES
AND
STRUCTURE
OF
HIGH-SPEED
WATER
JETS
.
20
3.1.1
VELOCITY
OF
HIGH-SPEED
WATERJETS
.
20
3.1.1.1
INTEGRAL
PRESSURE
BALANCE
.
20
3.1.1.2
MOMENTUM-TRANSFER
EFFICIENCY
.
20
3.1.2
KINETIC
ENERGY
OF
HIGH-SPEED
WATER
JETS
.
21
3.1.3
STRUCTURE
AND
PROPERTIES
OF
HIGH-SPEED
WATER
JETS
.
22
3.1.3.1
STRUCTURE
IN
AXIAL
DIRECTION
.
22
3.1.3.2
STRUCTURE
IN
RADIAL
DIRECTION
.
24
3.2
ABRASIVE
PARTICLE
-
WATER
JET
MIXING
PRINCIPLES
IN
INJECTION
SYSTEMS
.
27
XVI
CONTENT
3.1.3.2
STRUCTURE
IN
RADIAL
DIRECTION
.
24
3.2
ABRASIVE
PARTICLE
-
WATER
JET
MIXING
PRINCIPLES
IN
INJECTION
SYSTEMS
.
27
3.2.1
GENERAL
DESIGN
PRINCIPLES
.
27
3.2.2
INTERNAL
DESIGN
PARAMETERS
.
28
3.2.2.1
DISTANCE
BETWEEN
ORIFICE
EXIT
AND
FOCUS
ENTRANCE
.
28
3.2.2.2
DISTANCE
BETWEEN
ABRASIVE
INLET
AND
FOCUS
ENTRANCE
.
28
3.2.2.3
ALIGNMENT
BETWEEN
ORIFICE
AND
FOCUS
.
29
3.2.2.4
MIXING-CHAMBER
LENGTH
.
31
3.2.3
ALTERNATIVE
INJECTION-SYSTEM
DESIGNS
.
31
3.2.3.1
ANNULAR
JET
SYSTEMS
.
31
3.2.3.2
VORTEX-FLOW
SYSTEM
.
31
3.2.3.3
MULTIPLE
WATER-JET
SYSTEM
.
33
3.3
ABRASIVE
SUCTION
IN
INJECTION
SYSTEMS
.
34
3.3.1
PRESSURE
DIFFERENCE
FOR
PNEUMATIC
TRANSPORT
.
34
3.3.2
AIR-FLOW
RATE
.
35
3.3.3
ABRASIVE-PARTICLE
ENTRY
VELOCITY
.
36
3.3.4
INTERNAL
FOCUS
PRESSURE-PROFILE
.
37
3.4
ABRASIVE-PARTICLE
ACCELERATION
IN
INJECTION
SYSTEMS
.
38
3.4.1
SIMPLIFIED
MOMENTUM-TRANSFER
MODEL
.
38
3.4.1.1
INTEGRAL
IMPULSE
BALANCE
.
38
3.4.1.2
MOMENTUM-TRANSFER
EFFICIENCY
.
39
3.4.2
IMPROVED
ACCELERATION
MODEL
.
40
3.4.2.1
VELOCITY
COMPONENTS
.40
3.4.2.2
FORCE
BALANCE
IN
AXIAL
DIRECTION
.
41
3.4.2.3
FRICTION
COEFFICIENT
AND
REYNOLDS-NUMBER
.
41
3.4.2.4
FORCE
BALANCE
IN
RADIAL
DIRECTION
.
42
3.4.2.5
APPROXIMATE
SOLUTION
.
43
3.4.2.6
RIGOROUS
SOLUTION
.
44
3.4.2.7
NUMERICAL
SOLUTIONS
IN
AXIAL
DIRECTION
.
45
3.4.2.8
NUMERICAL
SOLUTIONS
IN
RADIAL
SOLUTION
.
47
3.4.2.9
RESULTS
OF
STEEL-BALL
PROJECTION
EXPERIMENTS
.
47
3.4.3
REGRESSION
MODEL
.
48
3.5
ABRASIVE-PARTICLE
FRAGMENTATION
IN
INJECTION
SYSTEMS
.
49
3.5.1
SOLID-PARTICLE
IMPACT
COMMINUTION
.
49
3.5.1.1
IMPACT
VELOCITY
AND
IMPACT
ANGLE
.
49
3.5.1.2
FRACTURE
ZONES
DURING
IMPACT
.
51
3.5.1.3
SIZE
EFFECTS
.
51
3.5.1.4
OTHER
MATERIAL
PROPERTIES
.
.51
3.5.2
ABRASIVE-PARTICLE
SIZE
REDUCTION
DURING
MIXING
AND
ACCELERATION.
.
52
3.5.2.1
GENERAL
OBSERVATIONS
.
52
3.5.2.2
THE
'
DISINTEGRATION-NUMBER
'
.
52
3.5.2.3
INFLUENCE
OF
ABRASIVE-PARTICLE
STRUCTURE
AND
PROPERTIES
.
54
3.5.2.4
ENERGY
ABSORPTION
DURING
ABRASIVE-PARTICLE
FRAGMENTATION.
55
3.5.3
ABRASIVE-PARTICLE
SHAPE
MODIFICATION
DURING
MIXING
AND
ACCELERATION
.
55
3.6
FOCUS
WEAR
IN
INJECTION
SYSTEMS
.
57
CONTENT
XVII
3.6.1
GENERAL
FEATURES
OF
FOCUS
WEAR
.
57
3.6.2
FOCUS-EXIT
DIAMETER
.
58
3.6.2.1
EARLY
OBSERVATIONS
.
58
3.6.2.2
FOCUS-WEAR
RATE
.
58
3.6.2.3
PROCESS-PARAMETER
INFLUENCE
.
58
3.6.2.4
HARDNESS
INFLUENCE
.
60
3.6.3
OTHER
FOCUS-WEAR
FEATURES
.
61
3.6.3.1
GENERAL
ASPECTS
.
61
3.6.3.2
FOCUS-MASS
LOSS
AND
FOCUS-WEAR
PATTERN
.
61
3.6.3.3
'
SELECTIVE
'
FOCUS
WEAR
.
63
3.6.3.4
ECCENTRICITY
OF
FOCUS-EXIT
WEAR
.
63
3.6.4
MODELING
THE
FOCUS-WEAR
PROCESS
.
63
3.6.4.1
PHENOMENOLOGICAL
FOCUS-WEAR
MODEL
.
63
3.6.4.2
'
TWO-MATERIAL
'
FOCUS
CONCEPT
.
65
3.6.4.3
LIFETIME-ESTIMATION
MODEL
.
65
3.7
GENERATION
OF
SUSPENSION-ABRASIVE
WATER
JETS
.
66
3.7.1
GENERAL
SYSTEM
FEATURES
.
66
3.7.1.1
SYSTEM
COMPONENTS
.
66
3.7.1.2
BYPASS-SYSTEMS
.
66
3.7.1.3
DIRECT-PUMPING
SYSTEMS
.
69
3.7.2
ABRASIVE-PARTICLE
ACCELERATION
.
70
3.7.2.1
ACCELERATION-NOZZLE
DESIGN
.70
3.7.2.2
SIMPLE
MOMENTUM-TRANSFER
MODEL
.70
3.7.2.3
NUMERICAL
SIMULATIONS
.
72
3.7.2.4
FINITE-ELEMENT
MODELING
.
74
3.7.2.5
ACCELERATION-NOZZLE
WEAR
.
76
4
STRUCTURE
AND
HYDRODYNAMICS
OF
ABRASIVE
WATER
JETS
.
77
4.1
GENERAL
STRUCTURE
OF
INJECTION-ABRASIVE
WATER
JETS
.
77
4.1.1
GENERAL
STRUCTURAL
FEATURES
.
77
4.1.2
OPTICAL
EXAMINATIONS
.
77
4.2
PHASE
DISTRIBUTIONS
IN
INJECTION-ABRASIVE
WATER
JETS
.
79
4.2.1
AVERAGE
ABRASIVE-DENSITY
DISTRIBUTION
.
79
4.2.2
RADIAL-ZONE
MODEL
.
79
4.2.3
PHASE
ESTIMATION
BY
X-RAY
DENSITOMETER
.
81
4.2.3.1
WATER-PHASE
DISTRIBUTION
.
81
4.2.3.2
ABRASIVE-PHASE
DISTRIBUTION
.
82
4.2.3.3
AIR
CONTENT
.
82
4.3
ABRASIVE-PARTICLE
VELOCITY
DISTRIBUTION
IN
INJECTION-ABRASIVE
WATER
JETS
.
83
4.3.1
RADIAL
VELOCITY-PROFILE
.
83
4.3.2
TURBULENCE
PROFILE
.
85
4.3.3
STATISTICAL
ABRASIVE-PARTICLE
VELOCITY
DISTRIBUTION
.
86
4.4
STRUCTURE
OF
SUSPENSION-ABRASIVE
WATER
JETS
.
87
XVIII
CONTENT
5
MATERIAL-REMOVAL
MECHANISMS
IN
ABRASIVE
WATER-JET
MACHINING
.
89
5.1
EROSION
BY
SINGLE
SOLID-PARTICLE
IMPACT
.
89
5.1.1
GENERAL
ASPECTS
OF
SOLID-PARTICLE
IMPACT
.
89
5.1.2
EROSION
OF
DUCTILE-BEHAVING
MATERIALS
.
90
5.1.2.1
GENERALIZED
EROSION
EQUATION
.
90
5.1.2.2
'
MICRO-CUTTING
'
MODEL
.
91
5.1.2.3
'
EXTENDED
'
CUTTING-DEFORMATION
'
MODEL
.
91
5.1.2.4
'
PLOUGHING-DEFORMATION
'
MODEL
.
92
5.1.2.5
LOW-CYCLE
FATIGUE
AND
THERMAL
EFFECTS
.
93
5.1.2.6
COMPARISON
OF
MODELS
FOR
DUCTILE-BEHAVING
MATERIALS
.
93
5.
1.3
EROSION
OF
BRITTLE-BEHAVING
MATERIALS
.
93
5.1.3.1
GENERALIZED
EROSION
EQUATION
.
93
5.1.3.2
ELASTIC
MODEL
.
94
5.1.3.3
ELASTIC-PLASTIC
MODEL
.
94
5.1.3.4
GRAIN-EJECTION
MODEL
.
94
5.1.3.5
COMPARISON
OF
MODELS
FOR
BRITTLE-BEHAVING
MATERIALS
.
94
5.2
MICRO-MECHANISMS
OF
ABRASIVE-PARTICLE
MATERIAL-REMOVAL
IN
ABRASIVE
WATER-JET
MACHINING
.
95
5.2.1
OBSERVATIONS
ON
DUCTILE-BEHAVING
MATERIALS
.
95
5.2.1.1
SEM-OBSERVATIONS
.
95
5.2.1.2
STRESS
MEASUREMENTS
.
99
5.2.2
OBSERVATIONS
ON
COMPOSITE
MATERIALS
.
99
5.2.2.1
SEM-OBSERVATIONS
ON
METAL-MATRIX
COMPOSITES
.
99
5.2.2.2
SEM-OBSERVATIONS
ON
FIBER
REINFORCED
COMPOSITES
.
100
5.2.3
OBSERVATIONS
ON
BRITTLE-BEHAVING
MATERIALS
.
101
5.2.3.1
SEM-OBSERVATIONS
ON
POLYCRYSTALLINE
CERAMICS
.
101
5.2.3.2
SEM-OBSERVATIONS
ON
REFRACTORY
CERAMICS
.
102
5.2.3.3
ACOUSTIC-EMISSION
MEASUREMENTS
ON
BRITTLE-BEHAVING
MATERIALS
.
102
5.2.3.4
PHOTOELASTICITY
INVESTIGATIONS
ON
BRITTLE-BEHAVING
MATERIALS
.
105
5.2.3.5
MICROBOILING
IN
CERAMICS
AND
METAL-MATRIX
COMPOSITES
.
105
5.2.3.6
OBSERVATIONS
ON
GLASS
.
107
5.3
MATERIAL
REMOVAL
BY
THE
HIGH-SPEED
WATER
FLOW
.
108
5.3.1
GENERAL
OBSERVATIONS
.
108
5.3.2
OBSERVATIONS
IN
PRE-CRACKED
MATERIALS
.
108
5.3.2.1
EFFECT
OF
'
WATER
WEDGING
'
.
108
5.3.2.2
'
TRANSITION-VELOCITY
'
CONCEPT
.
109
5.3.2.3
POCKET
FORMATION
IN
SOFT
MATERIALS
.
110
5.4
MACRO-MECHANISMS
OF
ABRASIVE
WATER-JET
MATERIAL
REMOVAL
.
ILL
5.4.1
SOME
OBSERVATIONS
OF
THE
SURFACE
TYPOGRAPHY
.
ILL
CONTENT
XIX
5.4.1.1
GENERAL
STATEMENT
.
111
5.4.1.2
SURFACE-PROFILE
INSPECTIONS
.
112
5.4.1.3
WAVELENGTH
DECOMPOSITION
.
114
5.4.2
TWO-DIMENSIONAL
MODEL
OF
THE
INTEGRAL
MATERIAL
REMOVAL
.
115
5.4.2.1
TRAVERSE-DIRECTION
STAGES
.
115
5.4.2.2
PENETRATION-DIRECTION
STAGES
.
116
5.4.2.3
FURTHER
DEVELOPMENT
OF
THE
MODEL
.
116
5.4.2.4
STEP
FORMATION
ON
THE
CUTTING
FRONT
.
117
5.4.3
THREE-DIMENSIONAL
MODEL
OF
THE
INTEGRAL
MATERIAL
REMOVAL
.
118
5.4.3.1
THREE-DIMENSIONAL
STEP
FORMATION
.
118
5.4.3.2
INFLUENCE
OF
MACHINE
VIBRATIONS
.
120
5.4.4
ALTERNATIVE
MODELS
OF
THE
INTEGRAL
MATERIAL
REMOVAL
.
122
5.4.1.1
GENERAL
COMMENTS
.
122
5.4.1.2
TWO-STAGE
IMPACT
ZONE
MODEL
.
122
5.4.1.3
'
THREE-ZONE
'
CUTTING
FRONT
MODEL
.
122
5.4.1.4
ENERGETIC
CUTTING
MODEL
.
123
5.4.1.5
NUMERICAL
SIMULATION
OF
THE
CUTTING
FRONT
.
124
5.5
ENERGY
BALANCE
OF
ABRASIVE
WATER-JET
MATERIAL
REMOVAL
.
125
5.5.1
GENERAL
ENERGY
SITUATION
.
125
5.5.1.1
DISSIPATED
ENERGY
.
125
5.5.1.2
ENERGY-DISSIPATION
FUNCTION
.
126
5.5.2
GEOMETRICAL
ENERGY-DISSIPATION
MODEL
.
127
5.5.2.1
SPECIAL
SOLUTIONS
OF
THE
ENERGY-DISSIPATION
FUNCTION
.
127
5.5.2.2
BASICS
FOR
A
GENERAL
SOLUTION
.
128
5.5.2.3
STRIATION
GEOMETRY
.
128
5.5.2.4
GENERAL
SOLUTION
OF
THE
ENERGY-DISSIPATION
FUNCTION
.
130
5.5.2.5
SOLUTION
FOR
THE
RELATIVE
DEPTH
OF
CUT
.
132
5.5.2.6
LOCAL
ENERGY-DISSIPATION
INTENSITY
.
132
5.6
EROSION-DEBRIS
GENERATION
AND
ACCELERATION
.
133
5.6.1
PROPERTIES
OF
GENERATED
EROSION
DEBRIS
.
133
5.6.1.1
STRUCTURE,
SIZE
AND
SHAPE
OF
EROSION
DEBRIS
.
133
5.6.1.2
CONTACT-NUMBER
ESTIMATION
.
135
5.6.1.3
EROSION-DEBRIS
SIZE
DISTRIBUTION
FUNCTION
.
136
5.6.2
EFFICIENCY
OF
EROSION-DEBRIS
GENERATION
.
137
5.6.2.1
SURFACE-BASED
EFFICIENCY
ESTIMATION-MODEL
.
137
5.6.2.2
FRACTURE-BASED
EFFICIENCY
ESTIMATION-MODEL
.
139
5.6.2.3
PARAMETER
INFLUENCE
ON
THE
EFFICIENCY
.
139
5.6.3
EROSION-DEBRIS
ACCELERATION
.
140
5.7
DAMPING
EFFECTS
IN
ABRASIVE
WATER-JET
MATERIAL
REMOVAL
.
142
5.7.1
DAMPING
DURING
SINGLE
PARTICLE-IMPACT
.
142
5.7.1.1
OBSERVATIONS
IN
SOLID-PARTICLE
EROSION
.
142
5.7.1.2
DAMPING
OF
FREE-FALLING
OBJECTS
.
142
5.7.1.3
CRITICAL
PARTICLE
VELOCITIES
FOR
DAMPING
.
143
5.7.2
DAMPING
DURING
ABRASIVE
WATER-JET
PENETRATION
.
145
5.7.2.1
CONCEPT
OF
FORCE
MEASUREMENTS
FOR
DAMPING
ESTIMATION
.
145
5.7.2.2
RESULTS
OF
FORCE
MEASUREMENTS
.
145
XX
CONTENT
5.7.2.3
EFFICIENCY
LOSSES
DUE
TO
DAMPING
.
146
5.8
HEAT
GENERATION
DURING
ABRASIVE
WATER-JET
MATERIAL
REMOVAL
.
146
5.8.
J
SOURCES
OF
HEAT
GENERATION
.
146
5.8.2
RESULTS
FROM
THERMOCOUPLE
MEASUREMENTS
.
147
5.8.2.1
GENERAL
RESULTS
.
147
5.8.2.2
PROCESS-PARAMETER
INFLUENCE
.
147
5.8.2.3
LOCAL
TEMPERATURE
DISTRIBUTION
.
148
5.8.3
RESULTS
FROM
INFRARED-THERMOGRAPHY
MEASUREMENTS
.
149
5.8.3.1
GENERAL
REMARKS
.
149
5.8.3.2
PROCESS-PARAMETER
INFLUENCE
ON
LINESCANS
.
149
5.8.3.3.
MATERIAL
ISOTHERMS
.
150
5.8.4
COMPARISON
BETWEEN
THERMOCOUPLE
AND
INFRARED-THERMOGRAPHY
.
150
5.8.5
MODELING
OF
THE
HEAT-GENERATION
PROCESS
.
152
5.8.5.1
BASIC
EQUATIONS
.
152
5.8.5.2
RESULTS
OF
THE
MODELING
.
153
5.9
TARGET-MATERIAL
PROPERTY
INFLUENCE
ON
MATERIAL
REMOVAL
.
154
5.9.1
HARDNESS
AND
MODULUS
OF
FRACTURE
.
154
5.9.1.1
GENERAL
OBSERVATIONS
.
154
5.9.1.2
'
TWO-STAGE
'
RESISTANCE
APPROACH
.
156
5.9.2
CONCEPTS
OF
MATERIAL
MACHINABILITY
.
156
5.9.2.1
THE
'
MACHINABILITY-NUMBER'
.
156
5.9.2.2
OTHER
MACHINABILITY
CONCEPTS
.
158
5.9.3
PROPERTIES
OF
PRE-CRACKED
MATERIALS
.
159
5.9.3.1
STRESS-STRAIN
BEHAVIOR
.
159
5.9.3.2
RELATIONS
TO
CONVENTIONAL
TESTING
PROCEDURES
.
160
5.9.4
OTHER
MATERIAL
PROPERTIES
.
161
5.9.4.1
MATERIAL
POROSITY
.
161
5.9.4.2
THERMAL-SHOCK
FACTOR
.
162
6
MODELING
OF
ABRASIVE
WATER
JET
CUTTING
PROCESSES
.
163
6.1
INTRODUCTION
.
163
6.2
VOLUME-DISPLACEMENT
MODELS
.
164
6.2.1
VOLUME-DISPLACEMENT
MODEL
FOR
DUCTILE
MATERIALS
.
164
6.2.3
VOLUME-DISPLACEMENT
MODEL
FOR
BRITTLE
MATERIALS
.
169
6.2.2
GENERALIZED
VOLUME-DISPLACEMENT
MODEL
.
171
6.3
ENERGY-CONSERVATION
MODELS
.
174
6.3.1
TWO-PARAMETER
ENERGY-CONSERVATION
MODEL
.
174
6.3.2
REGRESSION
ENERGY-CONSERVATION
MODEL
.
175
6.3.3
SEMI-EMPIRICAL
ENERGY-CONSERVATION
MODEL
.
176
6.3.4
ELASTO-PLASTIC
ENERGY-CONSERVATION
MODEL
.
178
6.3.5
ENERGY-CONSERVATION
MODELS
FOR
PRE-CRACKED
MATERIALS
.
179
6.4
REGRESSION
MODELS
.
181
6.4.1
MULTI-FACTORIAL
REGRESSION
MODELS
.
181
6.4.2
FURTHER
REGRESSION
MODELS
.
183
6.4.3
REGRESSION
MODEL
FOR
CUTTING
WITH
SUSPENSION-ABRASIVE
WATER
JETS.
184
CONTENT
XXI
6.5
KINETIC
MODEL
OF
THE
ABRASIVE
WATER-JET
CUTTING
PROCESS
.
184
6.6
FUZZY
RULE-BASED
MODEL
OF
THE
ABRASIVE
WATER-JET
CUTTING
PROCESS
.
189
6.7
NUMERICAL
MODELS
.
191
6.7.7
NUMERICAL
SIMULATIONS
.
191
6.7.2
NUMERICAL
PROCESS
MODEL
.
193
7
PROCESS
PARAMETER
OPTIMIZATION
.
195
7.1
DEFINITION
OF
PROCESS
AND
TARGET
PARAMETERS
.
195
7.1.1
PROCESS
PARAMETERS
.
195
7.7.2
TARGET
PARAMETERS
.
196
7.2
INFLUENCE
OF
HYDRAULIC
PROCESS
PARAMETERS
.
197
7.2.7
INFLUENCE
OF
PUMP
PRESSURE
.
197
7.2.1.1
GENERAL
TRENDSS
.
197
7.2.1.2
INCUBATION
STAGE
AND
THRESHOLD
PRESSURE
.
199
7.2.1.3
LINEAR
STAGE
AND
DECREASING
STAGE
.
200
7.2.1.4
OPTIMIZATION
ASPECTS
.
201
7.2.2
INFLUENCE
OF
WATER-ORIFICE
DIAMETER
.
202
7.2.2.1
GENERAL
TRENDS
.
202
7.2.2.2
THRESHOLD
ORIFICE
DIAMETER
.
204
7.2.2.3
OPTIMIZATION
ASPECTS
.
204
7.3
INFLUENCE
OF
CUTTING
PARAMETERS
.
204
7.3.1
INFLUENCE
OF
TRAVERSE
RATE
.
204
7.3.1.1
GENERAL
TRENDS
.
204
7.3.1.2
THRESHOLD
TRAVERSE
RATE
.
205
7.3.1.3
EXPOSURE
TIME
.
206
7.3.1.4
PARTICLE-IMPACT
FREQUENCY
AND
DAMPING
EFFECTS
.
206
7.3.1.5
INFLUENCE
ON
THE
CUTTING
RATE
.
207
7.3.2
INFLUENCE
OF
NUMBER
OF
PASSES
.
208
7.3.2.1
GENERAL
TRENDS
.
208
7.3.2.2
MULTIPASS
CUTTING
.
209
7.3.3
INFLUENCE
OF
STANDOFF
DISTANCE
.
210
7.3.3.1
GENERAL
TRENDS
.
210
7.3.3.2
SPECIAL
OBSERVATIONS
.
211
7.3.4
INFLUENCE
OF
IMPACT
ANGLE
.
211
7.3.4.1
INFLUENCE
ON
DUCTILE-BEHAVING
MATERIALS
.
211
7.3.4.2
INFLUENCE
ON
BRITTLE-BEHAVING
MATERIALS
.
211
7.4
INFLUENCE
OF
MIXING
PARAMETERS
.
212
7.4.1
INFLUENCE
OF
FOCUS
DIAMETER
.
212
7.4.1.1
GENERAL
TRENDS
.
212
7.4.1.2
OPTIMUM
FOCUS
DIAMETER
.
213
4.4.2
INFLUENCE
OF
FOCUS
LENGTH
.
214
7.4.2.1
GENERAL
TREND
.
214
7.4.2.2
OPTIMUM
FOCUS
LENGTH
.
215
7.5
INFLUENCE
OF
ABRASIVE
PARAMETERS
.
216
7.5.
1
INFLUENCE
OF
ABRASIVE-MASS
FLOW
RATE
.
216
XXII
CONTENT
7.5.1.1
GENERAL
TRENDS
.
216
7.5.1.2
OPTIMIZATION
ASPECTS
.
217
7.5.1.3
INFLUENCE
ON
CUTTING
RATE
.
218
7.5.2
INFLUENCE
OF
ABRASIVE-PARTICLE
DIAMETER
.
219
7.5.2.1
GENERAL
TRENDS
.
219
7.5.2.2
OPTIMIZATION
ASPECTS
.
220
7.5.3
INFLUENCE
OF
ABRASIVE-PARTICLE
SIZE
DISTRIBUTION
.
221
7.5.4
INFLUENCE
OF
ABRASIVE-PARTICLE
SHAPE
.
221
7.5.4.1
GENERAL
TRENDS
.
221
7.5.4.2
INFLUENCE
ON
DUCTILE-BEHAVING
MATERIALS
.
222
7.5.4.3
INFLUENCE
ON
BRITTLE-BEHAVING
MATERIALS
.
222
7.5.5
INFLUENCE
OF
ABRASIVE-MATERIAL
HARDNESS
.
223
7.5.5.1
GENERAL
TRENDS
.
223
7.5.5.2
OBSERVATIONS
IN
ABRASIVE
WATER-JET
CUTTING
.
223
7.5.6
RECYCLING
CAPACITY
OF
ABRASIVES
.
224
7.5.6.1
EARLY
OBSERVATIONS
.
224
7.5.6.2
PARAMETER
INFLUENCE
ON
DISINTEGRATION
.
225
7.5.6.3
PARTICLE-SHAPE
MODIFICATION
.
226
7.5.6.4
SUSPENSION
ABRASIVE
WATER
JETS
.
227
7.5.6.5
MODELLING
OF
RECYCLING
PROCESSES
.
228
8
GEOMETRY,
TOPOGRAPHY
AND
INTEGRITY
OF
ABRASIVE
WATER-JET
MACHINED
PARTS
.
230
8.1
CUT
GEOMETRY
AND
STRUCTURE
.
230
8.1.1
DEFINITION
OF
CUT
GEOMETRY
PARAMETERS
.
230
8.1.2
WIDTH
ON
TOP
OF
THE
CUT
.
233
8.1.2.1
DUCTILE-BEHAVING
MATERIALS
.
233
8.1.2.2
BRITTLE-BEHAVING
COMPOSITE
MATERIALS
.
233
8.1.2.3
CERAMICS,
GLASS
AND
METAL-MATRIX
COMPOUNDS
.
235
8.1.2.4
MODELS
FOR
TOP-WIDTH
ESTIMATION
.
236
8.1.3
WIDTH
ON
THE
BOTTOM
OF
THE
CUT
.
237
8.1.3.1
DUCTILE-BEHAVING
MATERIALS
.
237
8.1.3.2
BRITTLE-BEHAVING
COMPOSITE
MATERIALS
.
237
8.1.3.3
CERAMICS
AND
GLASS
.
237
8.1.4
TAPER
OF
THE
CUT
AND
FLANK
ANGLE
.
239
8.1.4.1
DUCTILE-BEHAVING
MATERIALS
.
239
8.1.4.2
BRITTLE-BEHAVING
COMPOSITE
MATERIALS
.
242
8.1.4.3
CERAMICS,
GLASS
AND
METAL-MATRIX
COMPOUNDS
.
245
8.1.4.4
MODELS
FOR
TAPER
ESTIMATION
.
248
8.1.5
GENERAL
CUT
PROFILE
.
248
8.1.5.1
EXPERIMENTAL
RESULTS
.
248
8.1.5.2
GENERAL
CUT-GEOMETRY
MODEL
.
248
8.1.6
INITIAL-DAMAGE
GEOMETRY
.
250
8.
1.
6.1
GENERAL
RELATIONS
.
250
8.1.6.2
DUCTILE-BEHAVING
MATERIALS
.
251
CONTENT
XXIII
8.1.6.3
BRITTLE-BEHAVING
COMPOSITE
MATERIALS
.
251
8.1.6.4
MODEL
FOR
INITIAL
DAMAGE
ZONE
GEOMETRY
.
252
8.2
TOPOGRAPHY
OF
ABRASIVE
WATER-JET
GENERATED
SURFACES
.
253
8.2.1
GENERAL
CHARACTERIZATION
.
253
8.2.1.1
INTRODUCTIONAL
ASPECTS
.
253
8.2.1.2
STATIC
CHARACTERIZATION
.
253
8.2.1.3
DYNAMIC
CHARACTERIZATION
.
255
8.2.1.4
WAVELENGTH
DECOMPOSITION
.
256
8.2.2
SURFACE
ROUGHNESS
.
257
8.2.2.1
GENERAL
RELATIONS
.
257
8.2.2.2
INFLUENCE
OF
HYDRAULIC
PARAMETERS
.
257
8.2.2.3
INFLUENCE
OF
CUTTING
PARAMETERS
.
258
8.2.2.4
INFLUENCE
OF
MIXING
PARAMETERS
.
258
8.2.2.5
INFLUENCE
OF
ABRASIVE
PARAMETERS
.
260
8.2.2.6
INFLUENCE
OF
TARGET-MATERIAL
STRUCTURE
.
261
8.2.2.7
MODELS
FOR
ROUGHNESS
ESTIMATION
.
262
8.2.3
SURFACE
WAVINESS
.
264
8.2.3.1
GENERAL
RELATIONS
.
264
8.2.3.2
INFLUENCE
OF
PROCESS
PARAMETERS
.
266
8.2.3.3
MODELS
FOR
WAVINESS
ESTIMATION
.
267
8.3
INTEGRITY
OF
ABRASIVE
WATER-JET
GENERATED
SURFACES
.
271
8.3.1
FATIGUE
LIFE
.
271
8.3.2
SURFACE
HARDENING
.
273
8.3.2.1
HARDNESS
MEASUREMENTS
.
273
8.3.2.2
STRESS
MEASUREMENTS
.
273
8.3.3
MICRO-STRUCTURAL
ASPECTS
.
275
8.3.3.1
GENERAL
ASPECTS
OF
ALTERATION
.
275
8.3.3.2
SURFACE
CRACKING
IN
BRITTLE-BEHAVING
MATERIALS
.
275
8.3.3.3
PHASE
MODIFICATIONS
IN
CERAMICS
.
277
8.3.4
ABRASIVE-PARTICLE
FRAGMENT
EMBEDDING
.
278
8.3.5
DELAMINATION
IN
COMPOSITE
MATERIALS
.
279
8.3.6
BURR
FORMATION
.
281
9
ALTERNATIVE
MACHINING
OPERATIONS
WITH
ABRASIVE
WATER
JET
.
284
9.1
CAPABILITY
OF
ABRASIVE
WATER
JETS
FOR
ALTERNATIVE
MACHINING
.
284
9.2
MILLING
WITH
ABRASIVE
WATER
JETS
.
284
9.2.7
CONCEPTS
OF
ABRASIVE
WATER-JET
MILLING
.
284
9.2.2
PARAMETER
OPTIMIZATION
IN
ABRASIVE
WATER-JET
MILLING
.
288
9.2.3
QUALITY
OF
ABRASIVE
WATER-JET
MILLING
.
292
9.2.4
MODELING
OF
ABRASIVE
WATER-JET
MILLING
.
295
9.2.4.1
GENERAL
MILLING
MODEL
.
295
9.2.4.2
MILLING
MODEL
FOR
FIBER-REINFORCED
PLASTICS
.
298
9.2.4.3
MODEL
FOR
DISCRETE
MILLING
.
299
9.2.4.4
NUMERICAL
MILLING
MODEL
.
301
9.3
TURNING
WITH
ABRASIVE
WATER
JETS
.
301
XXIV
CONTENT
9.3.]
MACROMECHANISM
OF
ABRASIVE
WATER-JET
TURNING
.
301
9.3.2
PARAMETER
OPTIMIZATION
IN
ABRASIVE
WATER-JET
TURNING
.
302
9.3.3
QUALITY
OF
ABRASIVE
WATER-JET
TURNING
.
307
9.3.4
MODELING
OF
ABRASIVE
WATER-JET
TURNING
.
308
9.3.4.1
ANALYTICAL
TURNING
MODEL
.
308
9.3.4.2
REGRESSION
TURNING
MODEL
.
310
9.4
PIERCING
WITH
ABRASIVE
WATER
JETS
.
312
9.4.1
MACROMECHANISM
OF
ABRASIVE
WATER-JET
PIERCING
.
312
9.4.2
PARAMETER
OPTIMIZATION
IN
ABRASIVE
WATER-JET
PIERCING
.
314
9.4.3
GEOMETRY
AND
QUALITY
OF
ABRASIVE
WATER-JET
PIERCED
HOLES
.
315
9.4.3.1
HOLE
GEOMETRY
.
315
9.4.3.2
HOLE
QUALITY
.
317
9.4.4
MODELING
OF
ABRASIVE
WATER-JET
PIERCING
.
319
9.4.4.1
PHENOMENOLOGICAL
PIERCING
MODEL
.
319
9.4.4.2
ANALYTICAL
PIERCING
MODEL
.
321
9.4.4.3
REGRESSION
PIERCING
MODEL
.
323
9.4.4.4
SIMULATION
MODEL
FOR
PIERCING
.
323
9.5
HOLE
TREPANNING
AND
DEEP-HOLE
DRILLING
WITH
ABRASIVE
WATER
JETS
.
325
9.5.1
HOLE
TREPANNING
WITH
ABRASIVE
WATERJETS
.
325
9.5.2
DEEP-HOLE
DRILLING
WITH
ABRASIVE
WATERJETS
.
326
9.6
POLISHING
WITH
ABRASIVE
WATER
JET
.
328
9.6.1
ABRASIVE
WATER-JET
POLISHING
CONCEPTS
.
328
9.6.2
QUALITY
ASPECTS
OF
ABRASIVE
WATER-JET
POLISHING
.
329
9.7
SCREW-THREAD
MACHINING
WITH
ABRASIVE
WATER
JETS
.
331
10
CONTROL
AND
SUPERVISION
OF
ABRASIVE
WATER-JET
MACHINING
PROCESSES
.
333
10.1
GENERAL
ASPECTS
OF
PROCESS
CONTROL
.
333
10.2
CONTROL
OF
THE
ABRASIVE-PARTICLE
SUCTION
PROCESS
.
334
10.2.1
GENERAL
DEMANDS
.
334
10.2.2
ACOUSTIC
SENSING
.
334
10.2.3
WORKPIECE
REACTION-FORCE
MEASUREMENT
.
335
10.2.4
VACUUM
SENSOR
.
335
10.2.5
ACTUAL
ABRASIVE-MASS
FLOW
RATE
.
335
10.3
CONTROL
OF
WATER-ORIFICE
CONDITION
AND
WEAR
.
336
10.3.1
OPTICAL
JET
INSPECTION
.
336
10.3.2
VACUUM-PRESSURE
MEASUREMENT
.
336
10.4
CONTROL
OF
FOCUS
CONDITION
AND
WEAR
.
337
10.4.1
GENERAL
COMMENTS
.
337
10.4.2
DIRECT
TRACKING
.
338
10.4.3
JET-STRUCTURE
MONITORING
.
339
10.4.4
AIR-FLOW
MEASUREMENTS
.
340
10.4.5
INFRARED
THERMOGRAPHY
.
341
10.4.6
ACOUSTIC
SENSING
.
343
10.4.7
WORKPIECE
REACTION-FORCE
MEASUREMENT
.
344
CONTENT
XXV
10.4.8
OFF-LINE
FOCUS-DIAMETER
MEASUREMENT
.
346
10.5
MEASUREMENT
AND
CONTROL
OF
ABRASIVE
WATER-JET
VELOCITY
.
346
10.5.1
INDUCTIVE
METHODS
.
346
10.5.2
MEASUREMENT
BY
IMPACT
CRATER
COUNTING
.
347
10.5.3
LASER-BASED
METHODS
.
349
10.5.3.1
LASER-2-FOCUS-VELOCIMETER
.
349
10.5.3.2
LASER-TRANSIT-VELOCIMETER
.
350
10.5.3.3
LASER-DOPPLER-VELOCIMETER
.
351
10.5.3.4
LASER-LIGHT-SECTION
PROCEDURE
TECHNIQUE
.
352
10.5.4
OTHER
OPTICAL
METHODS
.
352
10.5.4.1
SCHLIEREN-PHOTOGRAPHY
.
352
10.5.4.2
HIGH-SPEED-PHOTOGRAPHY
.
353
10.5.5
JET
IMPACT-FORCE
MEASUREMENTS
.
354
10.6
MEASUREMENT
AND
CONTROL
OF
ABRASIVE
WATER-JET
STRUCTURE
.
356
10.6.1
SCANNING-X-RAY
DENSITOMETRY
.
356
10.6.2
FLOW-SEPARATION
TECHNIQUE
.
357
10.7
CONTROL
OF
MATERIAL-REMOVAL
PROCESSES
.
358
10.7.1
ACOUSTIC-EMISSION
TECHNIQUE
.
358
10.7.1.1
MATERIAL-REMOVAL
VISUALIZATION
.
358
10.7.1.2
CUTTING-PROCESS
VISUALIZATION
AND
CUTTING-THROUGH
CONTROL
.
359
10.7.1.3
CUTTING-EFFICIENCY
CONTROL
.
362
10.7.2
CONTROL
BY
INFRARED
THERMOGRAPHY
.
362
10.8
CONTROL
OF
DEPTH
OF
PENETRATION
.
364
10.8.1
ACOUSTIC
SENSING
.
364
10.8.2
ACOUSTIC-EMISSION
TECHNIQUE
.
365
10.8.3
WORKPIECE
REACTION-FORCE
.
366
10.8.4
SUPERVISION
AND
COPNTROL
OF
PIERCING
PROCESSES
.
366
10.8.4.1
MONITORING
BY
PRESSURE
SENSORS
.
366
10.8.4.2
MONITORING
BY
ACOUSTIC-EMISSION
TECHNIQUE
.
367
10.9
CONTROL
OF
THE
GENERATED
SURFACE
TOPOGRAPHY
.
368
10.9.1
ROUGHNESS
CONTROL
BY
STATIC
WORKPIECE
REACTION-FORCE
.
368
10.9.2
ROUGHNESS
CONTROL
BY
DYNAMIC
WORKPIECE
REACTION-FORCE
.
371
10.9.3
SURFACE
QUALITY
MONITORING
BY
ACOUSTIC-EMISSION
TECHNIQUE
.
372
10.10
EXPERT
SYSTEMS
FOR
ABRASIVE
WATER-JET
MACHINING
.
374
REFERENCES
.
376 |
any_adam_object | 1 |
author | Momber, Andreas 1959- Kovacevic, Radovan 1947- |
author_GND | (DE-588)118092464 (DE-588)118092448 |
author_facet | Momber, Andreas 1959- Kovacevic, Radovan 1947- |
author_role | aut aut |
author_sort | Momber, Andreas 1959- |
author_variant | a m am r k rk |
building | Verbundindex |
bvnumber | BV011753604 |
callnumber-first | T - Technology |
callnumber-label | TJ840 |
callnumber-raw | TJ840 |
callnumber-search | TJ840 |
callnumber-sort | TJ 3840 |
callnumber-subject | TJ - Mechanical Engineering and Machinery |
classification_rvk | ZM 8330 ZM 8345 |
classification_tum | FER 789f |
ctrlnum | (OCoLC)38289148 (DE-599)BVBBV011753604 |
dewey-full | 621.9/3 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.9/3 |
dewey-search | 621.9/3 |
dewey-sort | 3621.9 13 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Fertigungstechnik Werkstoffwissenschaften / Fertigungstechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV011753604</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20011214</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">980127s1998 gw ad|| |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">952699877</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540762396</subfield><subfield code="9">3-540-76239-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)38289148</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011753604</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ840</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.9/3</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 8330</subfield><subfield code="0">(DE-625)157186:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 8345</subfield><subfield code="0">(DE-625)157188:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">FER 789f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Momber, Andreas</subfield><subfield code="d">1959-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118092464</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principles of abrasive water jet machining</subfield><subfield code="c">Andreas W. Momber and Radovan Kovacevic</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXV, 394 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water jet cutting</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wasserstrahlschneiden</subfield><subfield code="0">(DE-588)4192673-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wasserstrahlschneiden</subfield><subfield code="0">(DE-588)4192673-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kovacevic, Radovan</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118092448</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007931410&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007931410</subfield></datafield></record></collection> |
id | DE-604.BV011753604 |
illustrated | Illustrated |
indexdate | 2024-08-17T00:53:38Z |
institution | BVB |
isbn | 3540762396 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007931410 |
oclc_num | 38289148 |
open_access_boolean | |
owner | DE-703 DE-91G DE-BY-TUM DE-83 |
owner_facet | DE-703 DE-91G DE-BY-TUM DE-83 |
physical | XXV, 394 S. Ill., graph. Darst. |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer |
record_format | marc |
spelling | Momber, Andreas 1959- Verfasser (DE-588)118092464 aut Principles of abrasive water jet machining Andreas W. Momber and Radovan Kovacevic London [u.a.] Springer 1998 XXV, 394 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Water jet cutting Wasserstrahlschneiden (DE-588)4192673-0 gnd rswk-swf Wasserstrahlschneiden (DE-588)4192673-0 s DE-604 Kovacevic, Radovan 1947- Verfasser (DE-588)118092448 aut DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007931410&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Momber, Andreas 1959- Kovacevic, Radovan 1947- Principles of abrasive water jet machining Water jet cutting Wasserstrahlschneiden (DE-588)4192673-0 gnd |
subject_GND | (DE-588)4192673-0 |
title | Principles of abrasive water jet machining |
title_auth | Principles of abrasive water jet machining |
title_exact_search | Principles of abrasive water jet machining |
title_full | Principles of abrasive water jet machining Andreas W. Momber and Radovan Kovacevic |
title_fullStr | Principles of abrasive water jet machining Andreas W. Momber and Radovan Kovacevic |
title_full_unstemmed | Principles of abrasive water jet machining Andreas W. Momber and Radovan Kovacevic |
title_short | Principles of abrasive water jet machining |
title_sort | principles of abrasive water jet machining |
topic | Water jet cutting Wasserstrahlschneiden (DE-588)4192673-0 gnd |
topic_facet | Water jet cutting Wasserstrahlschneiden |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007931410&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT momberandreas principlesofabrasivewaterjetmachining AT kovacevicradovan principlesofabrasivewaterjetmachining |