Introduction to combinatorics:
This gradual, systematic introduction to the main concepts of combinatorics is the ideal text for advanced undergraduate and early graduate courses in this subject. Each of the book's three sections - Existence, Enumeration, and Construction - begins with a simply stated, first principle, which...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Wiley
1996
|
Schriftenreihe: | Wiley-Interscience series in discrete mathematics and optimization
|
Schlagworte: | |
Zusammenfassung: | This gradual, systematic introduction to the main concepts of combinatorics is the ideal text for advanced undergraduate and early graduate courses in this subject. Each of the book's three sections - Existence, Enumeration, and Construction - begins with a simply stated, first principle, which is then developed step by step until it leads to one of the three major achievements of combinatorics: Van der Waerden's theorem on arithmetic progressions, Polya's graph enumeration formula, and Leech's 24-dimensional lattice. Along the way, Professor Martin J. Erickson introduces fundamental results discusses interconnection and problem-solving techniques, and collects and disseminates open problems that raise new and innovative questions and observations. His carefully chosen end-of-chapter exercises demonstrate the applicability of combinatorial methods to a wide variety of problems, including many drawn from the William Lowell Putnam Mathematical Competition. Many important combinatorial methods are revisited several times in the course of the text - in exercises and examples as well as theorems and proofs. This repetition enables students to build confidence and reinforce their understanding of complex material. Mathematicians, statisticians, and computer scientists profit greatly from a solid foundation in combinatorics. Introduction to Combinatorics builds that foundation in an orderly, methodical, and highly accessible manner. |
Beschreibung: | XII, 195 S. graph. Darst. |
ISBN: | 0471154083 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV011520694 | ||
003 | DE-604 | ||
005 | 20220907 | ||
007 | t | ||
008 | 970904s1996 d||| |||| 00||| eng d | ||
020 | |a 0471154083 |9 0-471-15408-3 | ||
035 | |a (OCoLC)845219156 | ||
035 | |a (DE-599)BVBBV011520694 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-824 |a DE-91G |a DE-634 |a DE-83 | ||
050 | 0 | |a QA164 | |
082 | 0 | |a 511/.6 |2 20 | |
084 | |a SK 170 |0 (DE-625)143221: |2 rvk | ||
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
084 | |a MAT 050f |2 stub | ||
100 | 1 | |a Erickson, Martin J. |d 1963-2013 |e Verfasser |0 (DE-588)139664181 |4 aut | |
245 | 1 | 0 | |a Introduction to combinatorics |c Martin J. Erickson |
264 | 1 | |a New York [u.a.] |b Wiley |c 1996 | |
300 | |a XII, 195 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Wiley-Interscience series in discrete mathematics and optimization | |
520 | 3 | |a This gradual, systematic introduction to the main concepts of combinatorics is the ideal text for advanced undergraduate and early graduate courses in this subject. Each of the book's three sections - Existence, Enumeration, and Construction - begins with a simply stated, first principle, which is then developed step by step until it leads to one of the three major achievements of combinatorics: Van der Waerden's theorem on arithmetic progressions, Polya's graph enumeration formula, and Leech's 24-dimensional lattice. Along the way, Professor Martin J. Erickson introduces fundamental results discusses interconnection and problem-solving techniques, and collects and disseminates open problems that raise new and innovative questions and observations. His carefully chosen end-of-chapter exercises demonstrate the applicability of combinatorial methods to a wide variety of problems, including many drawn from the William Lowell Putnam Mathematical Competition. Many important combinatorial methods are revisited several times in the course of the text - in exercises and examples as well as theorems and proofs. This repetition enables students to build confidence and reinforce their understanding of complex material. Mathematicians, statisticians, and computer scientists profit greatly from a solid foundation in combinatorics. Introduction to Combinatorics builds that foundation in an orderly, methodical, and highly accessible manner. | |
650 | 7 | |a Combinatieleer |2 gtt | |
650 | 7 | |a Combinatória |2 larpcal | |
650 | 4 | |a Combinatorial analysis | |
650 | 0 | 7 | |a Kombinatorik |0 (DE-588)4031824-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Kombinatorik |0 (DE-588)4031824-2 |D s |
689 | 0 | |5 DE-604 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007752532 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804126040883200001 |
---|---|
any_adam_object | |
author | Erickson, Martin J. 1963-2013 |
author_GND | (DE-588)139664181 |
author_facet | Erickson, Martin J. 1963-2013 |
author_role | aut |
author_sort | Erickson, Martin J. 1963-2013 |
author_variant | m j e mj mje |
building | Verbundindex |
bvnumber | BV011520694 |
callnumber-first | Q - Science |
callnumber-label | QA164 |
callnumber-raw | QA164 |
callnumber-search | QA164 |
callnumber-sort | QA 3164 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 170 SK 890 |
classification_tum | MAT 050f |
ctrlnum | (OCoLC)845219156 (DE-599)BVBBV011520694 |
dewey-full | 511/.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.6 |
dewey-search | 511/.6 |
dewey-sort | 3511 16 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02890nam a2200433 c 4500</leader><controlfield tag="001">BV011520694</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220907 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">970904s1996 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471154083</subfield><subfield code="9">0-471-15408-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)845219156</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011520694</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA164</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.6</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 170</subfield><subfield code="0">(DE-625)143221:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 050f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Erickson, Martin J.</subfield><subfield code="d">1963-2013</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)139664181</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to combinatorics</subfield><subfield code="c">Martin J. Erickson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Wiley</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 195 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Wiley-Interscience series in discrete mathematics and optimization</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This gradual, systematic introduction to the main concepts of combinatorics is the ideal text for advanced undergraduate and early graduate courses in this subject. Each of the book's three sections - Existence, Enumeration, and Construction - begins with a simply stated, first principle, which is then developed step by step until it leads to one of the three major achievements of combinatorics: Van der Waerden's theorem on arithmetic progressions, Polya's graph enumeration formula, and Leech's 24-dimensional lattice. Along the way, Professor Martin J. Erickson introduces fundamental results discusses interconnection and problem-solving techniques, and collects and disseminates open problems that raise new and innovative questions and observations. His carefully chosen end-of-chapter exercises demonstrate the applicability of combinatorial methods to a wide variety of problems, including many drawn from the William Lowell Putnam Mathematical Competition. Many important combinatorial methods are revisited several times in the course of the text - in exercises and examples as well as theorems and proofs. This repetition enables students to build confidence and reinforce their understanding of complex material. Mathematicians, statisticians, and computer scientists profit greatly from a solid foundation in combinatorics. Introduction to Combinatorics builds that foundation in an orderly, methodical, and highly accessible manner.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Combinatieleer</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Combinatória</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007752532</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV011520694 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:11:08Z |
institution | BVB |
isbn | 0471154083 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007752532 |
oclc_num | 845219156 |
open_access_boolean | |
owner | DE-703 DE-824 DE-91G DE-BY-TUM DE-634 DE-83 |
owner_facet | DE-703 DE-824 DE-91G DE-BY-TUM DE-634 DE-83 |
physical | XII, 195 S. graph. Darst. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Wiley |
record_format | marc |
series2 | Wiley-Interscience series in discrete mathematics and optimization |
spelling | Erickson, Martin J. 1963-2013 Verfasser (DE-588)139664181 aut Introduction to combinatorics Martin J. Erickson New York [u.a.] Wiley 1996 XII, 195 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Wiley-Interscience series in discrete mathematics and optimization This gradual, systematic introduction to the main concepts of combinatorics is the ideal text for advanced undergraduate and early graduate courses in this subject. Each of the book's three sections - Existence, Enumeration, and Construction - begins with a simply stated, first principle, which is then developed step by step until it leads to one of the three major achievements of combinatorics: Van der Waerden's theorem on arithmetic progressions, Polya's graph enumeration formula, and Leech's 24-dimensional lattice. Along the way, Professor Martin J. Erickson introduces fundamental results discusses interconnection and problem-solving techniques, and collects and disseminates open problems that raise new and innovative questions and observations. His carefully chosen end-of-chapter exercises demonstrate the applicability of combinatorial methods to a wide variety of problems, including many drawn from the William Lowell Putnam Mathematical Competition. Many important combinatorial methods are revisited several times in the course of the text - in exercises and examples as well as theorems and proofs. This repetition enables students to build confidence and reinforce their understanding of complex material. Mathematicians, statisticians, and computer scientists profit greatly from a solid foundation in combinatorics. Introduction to Combinatorics builds that foundation in an orderly, methodical, and highly accessible manner. Combinatieleer gtt Combinatória larpcal Combinatorial analysis Kombinatorik (DE-588)4031824-2 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Kombinatorik (DE-588)4031824-2 s DE-604 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Erickson, Martin J. 1963-2013 Introduction to combinatorics Combinatieleer gtt Combinatória larpcal Combinatorial analysis Kombinatorik (DE-588)4031824-2 gnd |
subject_GND | (DE-588)4031824-2 (DE-588)4151278-9 |
title | Introduction to combinatorics |
title_auth | Introduction to combinatorics |
title_exact_search | Introduction to combinatorics |
title_full | Introduction to combinatorics Martin J. Erickson |
title_fullStr | Introduction to combinatorics Martin J. Erickson |
title_full_unstemmed | Introduction to combinatorics Martin J. Erickson |
title_short | Introduction to combinatorics |
title_sort | introduction to combinatorics |
topic | Combinatieleer gtt Combinatória larpcal Combinatorial analysis Kombinatorik (DE-588)4031824-2 gnd |
topic_facet | Combinatieleer Combinatória Combinatorial analysis Kombinatorik Einführung |
work_keys_str_mv | AT ericksonmartinj introductiontocombinatorics |