Finite volume (box) and finite element schemes for elliptic variational inequalities:
Abstract: "In a variational framework general finite volume (box) schemes are defined and studied for discretizing interior and boundary obstacle problems with mixed boundary conditions in two and three space dimensions. Convergence to first and second order is proved between the box and finite...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
München
1996
|
Schriftenreihe: | Technische Universität <München>: TUM-MATH
9613 |
Schlagworte: | |
Zusammenfassung: | Abstract: "In a variational framework general finite volume (box) schemes are defined and studied for discretizing interior and boundary obstacle problems with mixed boundary conditions in two and three space dimensions. Convergence to first and second order is proved between the box and finite element solutions depending on the choice of the boxes. Both for second order equations and obstacle problems the convergence rate between the solutions of the box schemes and the continuous problems is derived. Two penalization methods are proposed and analyzed for solving the finite volume obstacle problems. In particlar, the coupling of discretization and penalty parameters is discussed. Fianlly, numerical results are presented to illustrate the convergence behaviour between the exact, the Glaerkin and the box method solution." |
Beschreibung: | Literaturverz. S. 50 - 52 |
Beschreibung: | 52 S. graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV011447450 | ||
003 | DE-604 | ||
005 | 20040413 | ||
007 | t | ||
008 | 970715s1996 gw d||| |||| 00||| ger d | ||
016 | 7 | |a 950657166 |2 DE-101 | |
035 | |a (OCoLC)38039436 | ||
035 | |a (DE-599)BVBBV011447450 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-12 |a DE-91G | ||
100 | 1 | |a Steinbach, Jörg |e Verfasser |4 aut | |
245 | 1 | 0 | |a Finite volume (box) and finite element schemes for elliptic variational inequalities |c Jörg Steinbach |
264 | 1 | |a München |c 1996 | |
300 | |a 52 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Technische Universität <München>: TUM-MATH |v 9613 | |
500 | |a Literaturverz. S. 50 - 52 | ||
520 | 3 | |a Abstract: "In a variational framework general finite volume (box) schemes are defined and studied for discretizing interior and boundary obstacle problems with mixed boundary conditions in two and three space dimensions. Convergence to first and second order is proved between the box and finite element solutions depending on the choice of the boxes. Both for second order equations and obstacle problems the convergence rate between the solutions of the box schemes and the continuous problems is derived. Two penalization methods are proposed and analyzed for solving the finite volume obstacle problems. In particlar, the coupling of discretization and penalty parameters is discussed. Fianlly, numerical results are presented to illustrate the convergence behaviour between the exact, the Glaerkin and the box method solution." | |
650 | 4 | |a Boundary value problems | |
650 | 4 | |a Finite element method | |
830 | 0 | |a Technische Universität <München>: TUM-MATH |v 9613 |w (DE-604)BV006186461 |9 9613 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007700015 |
Datensatz im Suchindex
_version_ | 1804125965366853632 |
---|---|
any_adam_object | |
author | Steinbach, Jörg |
author_facet | Steinbach, Jörg |
author_role | aut |
author_sort | Steinbach, Jörg |
author_variant | j s js |
building | Verbundindex |
bvnumber | BV011447450 |
ctrlnum | (OCoLC)38039436 (DE-599)BVBBV011447450 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01887nam a2200337 cb4500</leader><controlfield tag="001">BV011447450</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040413 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">970715s1996 gw d||| |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">950657166</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)38039436</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011447450</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Steinbach, Jörg</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite volume (box) and finite element schemes for elliptic variational inequalities</subfield><subfield code="c">Jörg Steinbach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">München</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">52 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Technische Universität <München>: TUM-MATH</subfield><subfield code="v">9613</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 50 - 52</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "In a variational framework general finite volume (box) schemes are defined and studied for discretizing interior and boundary obstacle problems with mixed boundary conditions in two and three space dimensions. Convergence to first and second order is proved between the box and finite element solutions depending on the choice of the boxes. Both for second order equations and obstacle problems the convergence rate between the solutions of the box schemes and the continuous problems is derived. Two penalization methods are proposed and analyzed for solving the finite volume obstacle problems. In particlar, the coupling of discretization and penalty parameters is discussed. Fianlly, numerical results are presented to illustrate the convergence behaviour between the exact, the Glaerkin and the box method solution."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary value problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element method</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Technische Universität <München>: TUM-MATH</subfield><subfield code="v">9613</subfield><subfield code="w">(DE-604)BV006186461</subfield><subfield code="9">9613</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007700015</subfield></datafield></record></collection> |
id | DE-604.BV011447450 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:09:56Z |
institution | BVB |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007700015 |
oclc_num | 38039436 |
open_access_boolean | |
owner | DE-12 DE-91G DE-BY-TUM |
owner_facet | DE-12 DE-91G DE-BY-TUM |
physical | 52 S. graph. Darst. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
record_format | marc |
series | Technische Universität <München>: TUM-MATH |
series2 | Technische Universität <München>: TUM-MATH |
spelling | Steinbach, Jörg Verfasser aut Finite volume (box) and finite element schemes for elliptic variational inequalities Jörg Steinbach München 1996 52 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Technische Universität <München>: TUM-MATH 9613 Literaturverz. S. 50 - 52 Abstract: "In a variational framework general finite volume (box) schemes are defined and studied for discretizing interior and boundary obstacle problems with mixed boundary conditions in two and three space dimensions. Convergence to first and second order is proved between the box and finite element solutions depending on the choice of the boxes. Both for second order equations and obstacle problems the convergence rate between the solutions of the box schemes and the continuous problems is derived. Two penalization methods are proposed and analyzed for solving the finite volume obstacle problems. In particlar, the coupling of discretization and penalty parameters is discussed. Fianlly, numerical results are presented to illustrate the convergence behaviour between the exact, the Glaerkin and the box method solution." Boundary value problems Finite element method Technische Universität <München>: TUM-MATH 9613 (DE-604)BV006186461 9613 |
spellingShingle | Steinbach, Jörg Finite volume (box) and finite element schemes for elliptic variational inequalities Technische Universität <München>: TUM-MATH Boundary value problems Finite element method |
title | Finite volume (box) and finite element schemes for elliptic variational inequalities |
title_auth | Finite volume (box) and finite element schemes for elliptic variational inequalities |
title_exact_search | Finite volume (box) and finite element schemes for elliptic variational inequalities |
title_full | Finite volume (box) and finite element schemes for elliptic variational inequalities Jörg Steinbach |
title_fullStr | Finite volume (box) and finite element schemes for elliptic variational inequalities Jörg Steinbach |
title_full_unstemmed | Finite volume (box) and finite element schemes for elliptic variational inequalities Jörg Steinbach |
title_short | Finite volume (box) and finite element schemes for elliptic variational inequalities |
title_sort | finite volume box and finite element schemes for elliptic variational inequalities |
topic | Boundary value problems Finite element method |
topic_facet | Boundary value problems Finite element method |
volume_link | (DE-604)BV006186461 |
work_keys_str_mv | AT steinbachjorg finitevolumeboxandfiniteelementschemesforellipticvariationalinequalities |