Stochastic approximation algorithms and applications:
The book presents a comprehensive development of the modern theory of stochastic approximation, or recursive stochastic algorithms, for both constrained and unconstrained problems, with step sizes that either go to zero or are constant and small (and perhaps random). The general motivation arises fr...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Springer
1997
|
Schriftenreihe: | Applications of mathematics
35 |
Schlagworte: | |
Zusammenfassung: | The book presents a comprehensive development of the modern theory of stochastic approximation, or recursive stochastic algorithms, for both constrained and unconstrained problems, with step sizes that either go to zero or are constant and small (and perhaps random). The general motivation arises from the new challenges in applications that have arisen in recent years. There is a thorough treatment of both probability one and weak convergence methods for very general noise models. The convergence proofs are built around the powerful ODE (ordinary, differential equation) method, which characterizes the limit behavior of the algorithm in terms of the asymptotics of a "mean limit ODE" or an analogous dynamical system. Not only is the method particularly convenient for dealing with complicated noise and dynamics, but also greatly simplifies the treatment of the more classical cases There is a thorough treatment of rate of convergence, iterate averaging, high-dimensional problems, ergodic cost problems, stability methods for correlated noise, and decentralized and asynchronous algorithms |
Beschreibung: | 2. Aufl. u.d.T.: Kushner, Harold J.: Stochastic approximation and recursive algorithms and applications |
Beschreibung: | XXI, 417 S. graph. Darst. |
ISBN: | 038794916X |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV011443955 | ||
003 | DE-604 | ||
005 | 20150630 | ||
007 | t | ||
008 | 970722s1997 xxud||| |||| 00||| eng d | ||
016 | 7 | |a 951147889 |2 DE-101 | |
020 | |a 038794916X |9 0-387-94916-X | ||
035 | |a (OCoLC)35910993 | ||
035 | |a (DE-599)BVBBV011443955 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-91G |a DE-703 |a DE-384 |a DE-739 |a DE-824 |a DE-19 |a DE-634 |a DE-83 |a DE-11 |a DE-188 |a DE-706 | ||
050 | 0 | |a QA274.2.K88 1997 | |
082 | 0 | |a 519.5/4 |2 21 | |
082 | 0 | |a 519.5/4 21 | |
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a SK 850 |0 (DE-625)143263: |2 rvk | ||
084 | |a MAT 606f |2 stub | ||
084 | |a MAT 418f |2 stub | ||
084 | |a 27 |2 sdnb | ||
100 | 1 | |a Kushner, Harold J. |d 1933- |e Verfasser |0 (DE-588)11559163X |4 aut | |
245 | 1 | 0 | |a Stochastic approximation algorithms and applications |c Harold J. Kushner ; G. George Yin |
264 | 1 | |a New York [u.a.] |b Springer |c 1997 | |
300 | |a XXI, 417 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Applications of mathematics |v 35 | |
500 | |a 2. Aufl. u.d.T.: Kushner, Harold J.: Stochastic approximation and recursive algorithms and applications | ||
520 | 3 | |a The book presents a comprehensive development of the modern theory of stochastic approximation, or recursive stochastic algorithms, for both constrained and unconstrained problems, with step sizes that either go to zero or are constant and small (and perhaps random). The general motivation arises from the new challenges in applications that have arisen in recent years. There is a thorough treatment of both probability one and weak convergence methods for very general noise models. The convergence proofs are built around the powerful ODE (ordinary, differential equation) method, which characterizes the limit behavior of the algorithm in terms of the asymptotics of a "mean limit ODE" or an analogous dynamical system. Not only is the method particularly convenient for dealing with complicated noise and dynamics, but also greatly simplifies the treatment of the more classical cases | |
520 | |a There is a thorough treatment of rate of convergence, iterate averaging, high-dimensional problems, ergodic cost problems, stability methods for correlated noise, and decentralized and asynchronous algorithms | ||
650 | 7 | |a Approximation stochastique |2 ram | |
650 | 7 | |a Benaderingen (wiskunde) |2 gtt | |
650 | 7 | |a Martingalen |2 gtt | |
650 | 7 | |a Ruis |2 gtt | |
650 | 7 | |a Stochastische methoden |2 gtt | |
650 | 4 | |a Stochastic approximation | |
650 | 0 | 7 | |a Stochastische Approximation |0 (DE-588)4183371-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stochastische Approximation |0 (DE-588)4183371-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Yin, George |d 1954- |e Verfasser |0 (DE-588)115596798 |4 aut | |
830 | 0 | |a Applications of mathematics |v 35 |w (DE-604)BV000895226 |9 35 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007697358 |
Datensatz im Suchindex
_version_ | 1804125961417916416 |
---|---|
any_adam_object | |
author | Kushner, Harold J. 1933- Yin, George 1954- |
author_GND | (DE-588)11559163X (DE-588)115596798 |
author_facet | Kushner, Harold J. 1933- Yin, George 1954- |
author_role | aut aut |
author_sort | Kushner, Harold J. 1933- |
author_variant | h j k hj hjk g y gy |
building | Verbundindex |
bvnumber | BV011443955 |
callnumber-first | Q - Science |
callnumber-label | QA274 |
callnumber-raw | QA274.2.K88 1997 |
callnumber-search | QA274.2.K88 1997 |
callnumber-sort | QA 3274.2 K88 41997 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 820 SK 850 |
classification_tum | MAT 606f MAT 418f |
ctrlnum | (OCoLC)35910993 (DE-599)BVBBV011443955 |
dewey-full | 519.5/4 519.5/421 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5/4 519.5/4 21 |
dewey-search | 519.5/4 519.5/4 21 |
dewey-sort | 3519.5 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03023nam a2200553 cb4500</leader><controlfield tag="001">BV011443955</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150630 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">970722s1997 xxud||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">951147889</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">038794916X</subfield><subfield code="9">0-387-94916-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)35910993</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011443955</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA274.2.K88 1997</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/4</subfield><subfield code="2">21</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/4 21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 850</subfield><subfield code="0">(DE-625)143263:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 606f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 418f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">27</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kushner, Harold J.</subfield><subfield code="d">1933-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)11559163X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic approximation algorithms and applications</subfield><subfield code="c">Harold J. Kushner ; G. George Yin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 417 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Applications of mathematics</subfield><subfield code="v">35</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2. Aufl. u.d.T.: Kushner, Harold J.: Stochastic approximation and recursive algorithms and applications</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">The book presents a comprehensive development of the modern theory of stochastic approximation, or recursive stochastic algorithms, for both constrained and unconstrained problems, with step sizes that either go to zero or are constant and small (and perhaps random). The general motivation arises from the new challenges in applications that have arisen in recent years. There is a thorough treatment of both probability one and weak convergence methods for very general noise models. The convergence proofs are built around the powerful ODE (ordinary, differential equation) method, which characterizes the limit behavior of the algorithm in terms of the asymptotics of a "mean limit ODE" or an analogous dynamical system. Not only is the method particularly convenient for dealing with complicated noise and dynamics, but also greatly simplifies the treatment of the more classical cases</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">There is a thorough treatment of rate of convergence, iterate averaging, high-dimensional problems, ergodic cost problems, stability methods for correlated noise, and decentralized and asynchronous algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Approximation stochastique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Benaderingen (wiskunde)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Martingalen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ruis</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastische methoden</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic approximation</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Approximation</subfield><subfield code="0">(DE-588)4183371-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastische Approximation</subfield><subfield code="0">(DE-588)4183371-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, George</subfield><subfield code="d">1954-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115596798</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Applications of mathematics</subfield><subfield code="v">35</subfield><subfield code="w">(DE-604)BV000895226</subfield><subfield code="9">35</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007697358</subfield></datafield></record></collection> |
id | DE-604.BV011443955 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:09:52Z |
institution | BVB |
isbn | 038794916X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007697358 |
oclc_num | 35910993 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-703 DE-384 DE-739 DE-824 DE-19 DE-BY-UBM DE-634 DE-83 DE-11 DE-188 DE-706 |
owner_facet | DE-91G DE-BY-TUM DE-703 DE-384 DE-739 DE-824 DE-19 DE-BY-UBM DE-634 DE-83 DE-11 DE-188 DE-706 |
physical | XXI, 417 S. graph. Darst. |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer |
record_format | marc |
series | Applications of mathematics |
series2 | Applications of mathematics |
spelling | Kushner, Harold J. 1933- Verfasser (DE-588)11559163X aut Stochastic approximation algorithms and applications Harold J. Kushner ; G. George Yin New York [u.a.] Springer 1997 XXI, 417 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Applications of mathematics 35 2. Aufl. u.d.T.: Kushner, Harold J.: Stochastic approximation and recursive algorithms and applications The book presents a comprehensive development of the modern theory of stochastic approximation, or recursive stochastic algorithms, for both constrained and unconstrained problems, with step sizes that either go to zero or are constant and small (and perhaps random). The general motivation arises from the new challenges in applications that have arisen in recent years. There is a thorough treatment of both probability one and weak convergence methods for very general noise models. The convergence proofs are built around the powerful ODE (ordinary, differential equation) method, which characterizes the limit behavior of the algorithm in terms of the asymptotics of a "mean limit ODE" or an analogous dynamical system. Not only is the method particularly convenient for dealing with complicated noise and dynamics, but also greatly simplifies the treatment of the more classical cases There is a thorough treatment of rate of convergence, iterate averaging, high-dimensional problems, ergodic cost problems, stability methods for correlated noise, and decentralized and asynchronous algorithms Approximation stochastique ram Benaderingen (wiskunde) gtt Martingalen gtt Ruis gtt Stochastische methoden gtt Stochastic approximation Stochastische Approximation (DE-588)4183371-5 gnd rswk-swf Stochastische Approximation (DE-588)4183371-5 s DE-604 Yin, George 1954- Verfasser (DE-588)115596798 aut Applications of mathematics 35 (DE-604)BV000895226 35 |
spellingShingle | Kushner, Harold J. 1933- Yin, George 1954- Stochastic approximation algorithms and applications Applications of mathematics Approximation stochastique ram Benaderingen (wiskunde) gtt Martingalen gtt Ruis gtt Stochastische methoden gtt Stochastic approximation Stochastische Approximation (DE-588)4183371-5 gnd |
subject_GND | (DE-588)4183371-5 |
title | Stochastic approximation algorithms and applications |
title_auth | Stochastic approximation algorithms and applications |
title_exact_search | Stochastic approximation algorithms and applications |
title_full | Stochastic approximation algorithms and applications Harold J. Kushner ; G. George Yin |
title_fullStr | Stochastic approximation algorithms and applications Harold J. Kushner ; G. George Yin |
title_full_unstemmed | Stochastic approximation algorithms and applications Harold J. Kushner ; G. George Yin |
title_short | Stochastic approximation algorithms and applications |
title_sort | stochastic approximation algorithms and applications |
topic | Approximation stochastique ram Benaderingen (wiskunde) gtt Martingalen gtt Ruis gtt Stochastische methoden gtt Stochastic approximation Stochastische Approximation (DE-588)4183371-5 gnd |
topic_facet | Approximation stochastique Benaderingen (wiskunde) Martingalen Ruis Stochastische methoden Stochastic approximation Stochastische Approximation |
volume_link | (DE-604)BV000895226 |
work_keys_str_mv | AT kushnerharoldj stochasticapproximationalgorithmsandapplications AT yingeorge stochasticapproximationalgorithmsandapplications |