Partial functions in a total setting:
Abstract: "We discuss a scheme for defining and reasoning about partial recursive functions within a classical two-valued logic in which all terms denote. We show how a total extension of the partial function introduced by a recursive declaration may be axiomatised within a classical logic, and...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Edinburgh
1996
|
Schriftenreihe: | Laboratory for Foundations of Computer Science <Edinburgh>: LFCS report series
341 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We discuss a scheme for defining and reasoning about partial recursive functions within a classical two-valued logic in which all terms denote. We show how a total extension of the partial function introduced by a recursive declaration may be axiomatised within a classical logic, and illustrate by an example the kind of reasoning that our scheme supports. By presenting a naive set-theoretic semantics, we show that the system we propose is logically consistent. We discuss some of the practical advantages and limitations of our approach in the context of mechanical theorem-proving." |
Beschreibung: | 22 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV011271418 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 970326s1996 |||| 00||| eng d | ||
035 | |a (OCoLC)36071171 | ||
035 | |a (DE-599)BVBBV011271418 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-19 | ||
100 | 1 | |a Finn, Simon |e Verfasser |4 aut | |
245 | 1 | 0 | |a Partial functions in a total setting |c by Simon Finn, Michael Fourman & John Longley |
264 | 1 | |a Edinburgh |c 1996 | |
300 | |a 22 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Laboratory for Foundations of Computer Science <Edinburgh>: LFCS report series |v 341 | |
520 | 3 | |a Abstract: "We discuss a scheme for defining and reasoning about partial recursive functions within a classical two-valued logic in which all terms denote. We show how a total extension of the partial function introduced by a recursive declaration may be axiomatised within a classical logic, and illustrate by an example the kind of reasoning that our scheme supports. By presenting a naive set-theoretic semantics, we show that the system we propose is logically consistent. We discuss some of the practical advantages and limitations of our approach in the context of mechanical theorem-proving." | |
650 | 7 | |a Computer software |2 sigle | |
650 | 7 | |a Mathematics |2 sigle | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Computable functions | |
650 | 4 | |a Logic programming | |
700 | 1 | |a Fourman, Michael |e Verfasser |4 aut | |
700 | 1 | |a Longley, John |e Verfasser |4 aut | |
830 | 0 | |a Laboratory for Foundations of Computer Science <Edinburgh>: LFCS report series |v 341 |w (DE-604)BV008930032 |9 341 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007568903 |
Datensatz im Suchindex
_version_ | 1804125775668969472 |
---|---|
any_adam_object | |
author | Finn, Simon Fourman, Michael Longley, John |
author_facet | Finn, Simon Fourman, Michael Longley, John |
author_role | aut aut aut |
author_sort | Finn, Simon |
author_variant | s f sf m f mf j l jl |
building | Verbundindex |
bvnumber | BV011271418 |
ctrlnum | (OCoLC)36071171 (DE-599)BVBBV011271418 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01766nam a2200361 cb4500</leader><controlfield tag="001">BV011271418</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">970326s1996 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)36071171</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011271418</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Finn, Simon</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Partial functions in a total setting</subfield><subfield code="c">by Simon Finn, Michael Fourman & John Longley</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Edinburgh</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">22 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Laboratory for Foundations of Computer Science <Edinburgh>: LFCS report series</subfield><subfield code="v">341</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We discuss a scheme for defining and reasoning about partial recursive functions within a classical two-valued logic in which all terms denote. We show how a total extension of the partial function introduced by a recursive declaration may be axiomatised within a classical logic, and illustrate by an example the kind of reasoning that our scheme supports. By presenting a naive set-theoretic semantics, we show that the system we propose is logically consistent. We discuss some of the practical advantages and limitations of our approach in the context of mechanical theorem-proving."</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer software</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computable functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic programming</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fourman, Michael</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Longley, John</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Laboratory for Foundations of Computer Science <Edinburgh>: LFCS report series</subfield><subfield code="v">341</subfield><subfield code="w">(DE-604)BV008930032</subfield><subfield code="9">341</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007568903</subfield></datafield></record></collection> |
id | DE-604.BV011271418 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:06:55Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007568903 |
oclc_num | 36071171 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM |
owner_facet | DE-19 DE-BY-UBM |
physical | 22 S. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
record_format | marc |
series | Laboratory for Foundations of Computer Science <Edinburgh>: LFCS report series |
series2 | Laboratory for Foundations of Computer Science <Edinburgh>: LFCS report series |
spelling | Finn, Simon Verfasser aut Partial functions in a total setting by Simon Finn, Michael Fourman & John Longley Edinburgh 1996 22 S. txt rdacontent n rdamedia nc rdacarrier Laboratory for Foundations of Computer Science <Edinburgh>: LFCS report series 341 Abstract: "We discuss a scheme for defining and reasoning about partial recursive functions within a classical two-valued logic in which all terms denote. We show how a total extension of the partial function introduced by a recursive declaration may be axiomatised within a classical logic, and illustrate by an example the kind of reasoning that our scheme supports. By presenting a naive set-theoretic semantics, we show that the system we propose is logically consistent. We discuss some of the practical advantages and limitations of our approach in the context of mechanical theorem-proving." Computer software sigle Mathematics sigle Mathematik Computable functions Logic programming Fourman, Michael Verfasser aut Longley, John Verfasser aut Laboratory for Foundations of Computer Science <Edinburgh>: LFCS report series 341 (DE-604)BV008930032 341 |
spellingShingle | Finn, Simon Fourman, Michael Longley, John Partial functions in a total setting Laboratory for Foundations of Computer Science <Edinburgh>: LFCS report series Computer software sigle Mathematics sigle Mathematik Computable functions Logic programming |
title | Partial functions in a total setting |
title_auth | Partial functions in a total setting |
title_exact_search | Partial functions in a total setting |
title_full | Partial functions in a total setting by Simon Finn, Michael Fourman & John Longley |
title_fullStr | Partial functions in a total setting by Simon Finn, Michael Fourman & John Longley |
title_full_unstemmed | Partial functions in a total setting by Simon Finn, Michael Fourman & John Longley |
title_short | Partial functions in a total setting |
title_sort | partial functions in a total setting |
topic | Computer software sigle Mathematics sigle Mathematik Computable functions Logic programming |
topic_facet | Computer software Mathematics Mathematik Computable functions Logic programming |
volume_link | (DE-604)BV008930032 |
work_keys_str_mv | AT finnsimon partialfunctionsinatotalsetting AT fourmanmichael partialfunctionsinatotalsetting AT longleyjohn partialfunctionsinatotalsetting |