Partial functions in a total setting:

Abstract: "We discuss a scheme for defining and reasoning about partial recursive functions within a classical two-valued logic in which all terms denote. We show how a total extension of the partial function introduced by a recursive declaration may be axiomatised within a classical logic, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Finn, Simon (VerfasserIn), Fourman, Michael (VerfasserIn), Longley, John (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Edinburgh 1996
Schriftenreihe:Laboratory for Foundations of Computer Science <Edinburgh>: LFCS report series 341
Schlagworte:
Zusammenfassung:Abstract: "We discuss a scheme for defining and reasoning about partial recursive functions within a classical two-valued logic in which all terms denote. We show how a total extension of the partial function introduced by a recursive declaration may be axiomatised within a classical logic, and illustrate by an example the kind of reasoning that our scheme supports. By presenting a naive set-theoretic semantics, we show that the system we propose is logically consistent. We discuss some of the practical advantages and limitations of our approach in the context of mechanical theorem-proving."
Beschreibung:22 S.

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!