Many-body tree methods in physics:
Studying the dynamics of a large number of particles interacting through long-range forces, commonly referred to as the N-body problem, is a central aspect of many different branches of physics. In recent years, significant advances have been made in the development of fast N-body algorithms to deal...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
1996
|
Ausgabe: | 1. publ. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | Studying the dynamics of a large number of particles interacting through long-range forces, commonly referred to as the N-body problem, is a central aspect of many different branches of physics. In recent years, significant advances have been made in the development of fast N-body algorithms to deal efficiently with such complex problems. This book is the first to give a thorough introduction to these so-called tree methods, setting out the basic principles and giving many practical examples of their use. After a description of the key features of the hierarchical tree method, a variety of general N-body techniques are presented. Open boundary problems are then discussed, as well as the optimization of tree codes, periodic boundary problems, and the fast multipole method No prior specialist knowledge is assumed, and the techniques are illustrated throughout with reference to a broad range of applications. The book will be of great interest to graduate students and researchers working on the modelling of systems in astrophysics, plasma physics, nuclear and particle physics, condensed-matter physics, and materials science |
Beschreibung: | IX, 168 S. graph. Darst. |
ISBN: | 0521495644 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV011270280 | ||
003 | DE-604 | ||
005 | 20150105 | ||
007 | t | ||
008 | 970325s1996 d||| |||| 00||| eng d | ||
020 | |a 0521495644 |9 0-521-49564-4 | ||
035 | |a (OCoLC)33102040 | ||
035 | |a (DE-599)BVBBV011270280 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-703 |a DE-355 |a DE-11 |a DE-91G | ||
050 | 0 | |a QC174.17.P7 | |
082 | 0 | |a 530.1/44 |2 20 | |
084 | |a UL 1000 |0 (DE-625)145815: |2 rvk | ||
084 | |a PHY 026f |2 stub | ||
100 | 1 | |a Pfalzner, Susanne |e Verfasser |4 aut | |
245 | 1 | 0 | |a Many-body tree methods in physics |c Susanne Pfalzner ; Paul Gibbon |
246 | 1 | 3 | |a Many body tree methods in physics |
250 | |a 1. publ. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 1996 | |
300 | |a IX, 168 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 3 | |a Studying the dynamics of a large number of particles interacting through long-range forces, commonly referred to as the N-body problem, is a central aspect of many different branches of physics. In recent years, significant advances have been made in the development of fast N-body algorithms to deal efficiently with such complex problems. This book is the first to give a thorough introduction to these so-called tree methods, setting out the basic principles and giving many practical examples of their use. After a description of the key features of the hierarchical tree method, a variety of general N-body techniques are presented. Open boundary problems are then discussed, as well as the optimization of tree codes, periodic boundary problems, and the fast multipole method | |
520 | |a No prior specialist knowledge is assumed, and the techniques are illustrated throughout with reference to a broad range of applications. The book will be of great interest to graduate students and researchers working on the modelling of systems in astrophysics, plasma physics, nuclear and particle physics, condensed-matter physics, and materials science | ||
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Many-body problem | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Vielkörperproblem |0 (DE-588)4078900-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computerphysik |0 (DE-588)4273564-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Vielkörperproblem |0 (DE-588)4078900-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Computerphysik |0 (DE-588)4273564-6 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Gibbon, Paul |d 1964- |e Verfasser |0 (DE-588)120821141 |4 aut | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007567919&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-007567919 |
Datensatz im Suchindex
_version_ | 1804125774200963072 |
---|---|
adam_text | MANY-BODY TREE METHODS IN PHYSICS SUSANNE PFALZNER MAX-PLANCK-RESEARCH
UNIT DUST IN STARFORMING REGIONS, UNIVERSITY OF JENA PAUL GIBBON
MAX-PLANCK-RESEARCH UNIT X-RAY OPTICS, UNIVERSITY OF JENA CAMBRIDGE
UNIVERSITY PRESS CONTENTS PREFACE PAGE IX 1 INTRODUCTION 1 2 BASIC
PRINCIPLES OF THE HIERARCHICAL TREE METHOD 9 2.1 TREE CONSTRUCTION 9 2.2
FORCE CALCULATION 18 2.3 MULTIPOLE EXPANSION 26 2.4 DYNAMICS 35 3 OPEN
BOUNDARY PROBLEMS 37 3.1 GRAVITATIONAL PROBLEMS IN ASTROPHYSICS 37 3.2
SPACE-CHARGE DOMINATED PARTICLE BEAMS 47 3.3 COLLISIONS OF HEAVY NUCLEI:
A CASE STUDY 52 4 OPTIMISATION OF HIERARCHICAL TREE CODES 65 4.1
INDIVIDUAL TIMESTEPS 65 4.2 HIGHER ORDER INTEGRATION SCHEMES 70 4.3
VECTORISATION AND PARALLELISATION 73 4.4 TIMING 81 4.5 ACCURACY 83 4.6
SPECIAL HARDWARE 87 5 PERIODIC BOUNDARY CONDITIONS 88 5.1 MINIMUM IMAGE
METHOD 90 5.2 EWALD SUMMATION 93 5.3 TIMING 102 5.4 MONTE CARLO
APPLICATION 104 5.5 NONEQUILIBRIUM SYSTEMS 106 6 PERIODIC BOUNDARY
PROBLEMS 109 6.1 PLASMA PHYSICS: COLLISIONS IN DENSE PLASMAS 110 6.2
SYSTEMS OF MORE COMPLEX INTERACTION POTENTIALS 117 VII VIII CONTENTS 6.3
BIOMOLECULES 120 6.4 MATERIALS SCIENCE 124 7 THE FAST MULTIPOLE METHOD
126 7.1 OUTLINE OF THE FAST MULTIPOLE ALGORITHM 126 7.2 2D EXPANSION 134
7.3 3D EXPANSION 139 7.4 IMPLEMENTATION OF FAST MULTIPOLE CODES 140 7.5
TIMING AND ACCURACY 143 7.6 APPLICATIONS 146 APPENDIX 1: MULTIPOLE
EXPANSION IN TWO DIMENSIONS 149 APPENDIX 2: SPHERICAL HARMONICS 152
APPENDIX 3: NEAR-NEIGHBOUR SEARCH 155 REFERENCES 157 INDEX 165
|
any_adam_object | 1 |
author | Pfalzner, Susanne Gibbon, Paul 1964- |
author_GND | (DE-588)120821141 |
author_facet | Pfalzner, Susanne Gibbon, Paul 1964- |
author_role | aut aut |
author_sort | Pfalzner, Susanne |
author_variant | s p sp p g pg |
building | Verbundindex |
bvnumber | BV011270280 |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.17.P7 |
callnumber-search | QC174.17.P7 |
callnumber-sort | QC 3174.17 P7 |
callnumber-subject | QC - Physics |
classification_rvk | UL 1000 |
classification_tum | PHY 026f |
ctrlnum | (OCoLC)33102040 (DE-599)BVBBV011270280 |
dewey-full | 530.1/44 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1/44 |
dewey-search | 530.1/44 |
dewey-sort | 3530.1 244 |
dewey-tens | 530 - Physics |
discipline | Physik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02888nam a2200493 c 4500</leader><controlfield tag="001">BV011270280</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150105 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">970325s1996 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521495644</subfield><subfield code="9">0-521-49564-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)33102040</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011270280</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC174.17.P7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1/44</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UL 1000</subfield><subfield code="0">(DE-625)145815:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 026f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pfalzner, Susanne</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Many-body tree methods in physics</subfield><subfield code="c">Susanne Pfalzner ; Paul Gibbon</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Many body tree methods in physics</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 168 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Studying the dynamics of a large number of particles interacting through long-range forces, commonly referred to as the N-body problem, is a central aspect of many different branches of physics. In recent years, significant advances have been made in the development of fast N-body algorithms to deal efficiently with such complex problems. This book is the first to give a thorough introduction to these so-called tree methods, setting out the basic principles and giving many practical examples of their use. After a description of the key features of the hierarchical tree method, a variety of general N-body techniques are presented. Open boundary problems are then discussed, as well as the optimization of tree codes, periodic boundary problems, and the fast multipole method</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">No prior specialist knowledge is assumed, and the techniques are illustrated throughout with reference to a broad range of applications. The book will be of great interest to graduate students and researchers working on the modelling of systems in astrophysics, plasma physics, nuclear and particle physics, condensed-matter physics, and materials science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Many-body problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vielkörperproblem</subfield><subfield code="0">(DE-588)4078900-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computerphysik</subfield><subfield code="0">(DE-588)4273564-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Vielkörperproblem</subfield><subfield code="0">(DE-588)4078900-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Computerphysik</subfield><subfield code="0">(DE-588)4273564-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gibbon, Paul</subfield><subfield code="d">1964-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120821141</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007567919&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007567919</subfield></datafield></record></collection> |
id | DE-604.BV011270280 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:06:54Z |
institution | BVB |
isbn | 0521495644 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007567919 |
oclc_num | 33102040 |
open_access_boolean | |
owner | DE-29T DE-703 DE-355 DE-BY-UBR DE-11 DE-91G DE-BY-TUM |
owner_facet | DE-29T DE-703 DE-355 DE-BY-UBR DE-11 DE-91G DE-BY-TUM |
physical | IX, 168 S. graph. Darst. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Pfalzner, Susanne Verfasser aut Many-body tree methods in physics Susanne Pfalzner ; Paul Gibbon Many body tree methods in physics 1. publ. Cambridge [u.a.] Cambridge Univ. Press 1996 IX, 168 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Studying the dynamics of a large number of particles interacting through long-range forces, commonly referred to as the N-body problem, is a central aspect of many different branches of physics. In recent years, significant advances have been made in the development of fast N-body algorithms to deal efficiently with such complex problems. This book is the first to give a thorough introduction to these so-called tree methods, setting out the basic principles and giving many practical examples of their use. After a description of the key features of the hierarchical tree method, a variety of general N-body techniques are presented. Open boundary problems are then discussed, as well as the optimization of tree codes, periodic boundary problems, and the fast multipole method No prior specialist knowledge is assumed, and the techniques are illustrated throughout with reference to a broad range of applications. The book will be of great interest to graduate students and researchers working on the modelling of systems in astrophysics, plasma physics, nuclear and particle physics, condensed-matter physics, and materials science Mathematische Physik Algorithms Many-body problem Mathematical physics Vielkörperproblem (DE-588)4078900-7 gnd rswk-swf Computerphysik (DE-588)4273564-6 gnd rswk-swf Vielkörperproblem (DE-588)4078900-7 s DE-604 Computerphysik (DE-588)4273564-6 s Gibbon, Paul 1964- Verfasser (DE-588)120821141 aut GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007567919&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Pfalzner, Susanne Gibbon, Paul 1964- Many-body tree methods in physics Mathematische Physik Algorithms Many-body problem Mathematical physics Vielkörperproblem (DE-588)4078900-7 gnd Computerphysik (DE-588)4273564-6 gnd |
subject_GND | (DE-588)4078900-7 (DE-588)4273564-6 |
title | Many-body tree methods in physics |
title_alt | Many body tree methods in physics |
title_auth | Many-body tree methods in physics |
title_exact_search | Many-body tree methods in physics |
title_full | Many-body tree methods in physics Susanne Pfalzner ; Paul Gibbon |
title_fullStr | Many-body tree methods in physics Susanne Pfalzner ; Paul Gibbon |
title_full_unstemmed | Many-body tree methods in physics Susanne Pfalzner ; Paul Gibbon |
title_short | Many-body tree methods in physics |
title_sort | many body tree methods in physics |
topic | Mathematische Physik Algorithms Many-body problem Mathematical physics Vielkörperproblem (DE-588)4078900-7 gnd Computerphysik (DE-588)4273564-6 gnd |
topic_facet | Mathematische Physik Algorithms Many-body problem Mathematical physics Vielkörperproblem Computerphysik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007567919&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT pfalznersusanne manybodytreemethodsinphysics AT gibbonpaul manybodytreemethodsinphysics |