Handbook of formal languages: 1 Word, language, grammar
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
1997
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVII, 873 S. |
ISBN: | 3540604200 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV011247956 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 970314s1997 |||| 00||| eng d | ||
020 | |a 3540604200 |9 3-540-60420-0 | ||
035 | |a (OCoLC)174236249 | ||
035 | |a (DE-599)BVBBV011247956 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-739 |a DE-20 |a DE-384 |a DE-19 |a DE-703 |a DE-29 |a DE-29T |a DE-91G |a DE-473 |a DE-706 |a DE-634 |a DE-11 |a DE-188 | ||
084 | |a CC 4700 |0 (DE-625)17630: |2 rvk | ||
084 | |a ST 130 |0 (DE-625)143588: |2 rvk | ||
084 | |a ST 136 |0 (DE-625)143591: |2 rvk | ||
245 | 1 | 0 | |a Handbook of formal languages |n 1 |p Word, language, grammar |c G. Rozenberg ... (eds.) |
264 | 1 | |a Berlin [u.a.] |b Springer |c 1997 | |
300 | |a XVII, 873 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Formale Sprache |0 (DE-588)4017848-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Logik |0 (DE-588)4037951-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Automatentheorie |0 (DE-588)4003953-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Informatik |0 (DE-588)4026894-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Formale Sprache |0 (DE-588)4017848-1 |D s |
689 | 0 | 1 | |a Informatik |0 (DE-588)4026894-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Mathematische Logik |0 (DE-588)4037951-6 |D s |
689 | 1 | 1 | |a Formale Sprache |0 (DE-588)4017848-1 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Automatentheorie |0 (DE-588)4003953-5 |D s |
689 | 2 | 1 | |a Formale Sprache |0 (DE-588)4017848-1 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Formale Sprache |0 (DE-588)4017848-1 |D s |
689 | 3 | |5 DE-604 | |
700 | 1 | |a Rozenberg, Grzegorz |d 1942- |e Sonstige |0 (DE-588)1079124624 |4 oth | |
773 | 0 | 8 | |w (DE-604)BV011247946 |g 1 |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007549872&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-007549872 |
Datensatz im Suchindex
_version_ | 1804125749814231040 |
---|---|
adam_text | CONTENTS OF VOLUME 1 CHAPTER 1. FORMAL LANGUAGES: AN INTRODUCTION AND A
SYNOPSIS ALEXANDRU MATEESCU AND ARTO SALOMAA
............................ 1 1. LANGUAGES, FORMAL AND NATURAL
................................. 1 1.1 HISTORICAL LINGUISTICS
...................................... 3 1.2 LANGUAGE AND EVOLUTION
................................... 7 1.3 LANGUAGE AND NEURAL STRUCTURES
............................ 9 2. GLIMPSES OF MATHEMATICAL LANGUAGE
THEORY ...................... 9 2.1 WORDS AND LANGUAGES
..................................... 10 2.2 ABOUT COMMUTING
........................................ 12 2.3 ABOUT STARS
............................................. 15 2.4 AVOIDING SCATTERED
SUBWORDS .............................. 19 2.5 ABOUT SCATTERED RESIDUALS
................................. 24 3. FORMAL LANGUAGES: A TELEGRAPHIC
SURVEY ......................... 27 3.1 LANGUAGE AND GRAMMAR. CHOMSKY
HIERARCHY ................. 27 3.2 REGULAR AND CONTEXT-FREE LANGUAGES
......................... 31 3.3 L SYSTEMS
............................................... 33 3.4 MORE POWERFUL
GRAMMARS AND GRAMMAR SYSTEMS .............. 35 3.5 BOOKS ON FORMAL
LANGUAGES ................................ 36 REFERENCES
..................................................... 38 CHAPTER 2.
REGULAR LANGUAGES SHENG YU
...................................................... 41 1.
PRELIMINARIES ................................................ 43 2.
FINITE AUTOMATA ............................................. 45 2.1
DETERMINISTIC FINITE AUTOMATA .............................. 45 2.2
NONDETERMINISTIC FINITE AUTOMATA .......................... 49 2.3
ALTERNATING FINITE AUTOMATA ............................... 54 2.4
FINITE AUTOMATA WITH OUTPUT .............................. 66 3. REGULAR
EXPRESSIONS .......................................... 70 3.1 REGULAR
EXPRESSIONS * THE DEFINITION ........................ 70 3.2 REGULAR
EXPRESSIONS TO FINITE AUTOMATA ...................... 71 3.3 FINITE
AUTOMATA TO REGULAR EXPRESSIONS ...................... 74 3.4 STAR
HEIGHT AND EXTENDED REGULAR EXPRESSIONS ................ 77 3.5 REGULAR
EXPRESSIONS FOR REGULAR LANGUAGES OF POLYNOMIAL DENSITY 80 4. PROPERTIES
OF REGULAR LANGUAGES ................................ 82 4.1 FOUR
PUMPING LEMMAS .................................... 82 4.2 CLOSURE
PROPERTIES ........................................ 88 4.3 DERIVATIVES
AND THE MYHILL-NERODE THEOREM ................. 92 X CONTENTS 5.
COMPLEXITY ISSUES ............................................ 96 5.1
STATE COMPLEXITY ISSUES ................................... 96 5.2 TIME
AND SPACE COMPLEXITY ISSUES .......................... 102 REFERENCES
..................................................... 105 CHAPTER 3.
CONTEXT-FREE LANGUAGES AND PUSHDOWN AUTOMATA JEAN-MICHEL AUTEBERT, JEAN
BERSTEL, AND LUC BOASSON ............... 111 1. INTRODUCTION
................................................. 111 1.1 GRAMMARS
.............................................. 112 1.2 EXAMPLES
............................................... 113 2. SYSTEMS OF
EQUATIONS ......................................... 114 2.1 SYSTEMS
................................................ 115 2.2 RESOLUTION
.............................................. 120 2.3 LINEAR SYSTEMS
.......................................... 121 2.4 PARIKH*S THEOREM
......................................... 123 3. NORMAL FORMS
............................................... 124 3.1 CHOMSKY NORMAL
FORM .................................... 124 3.2 GREIBACH NORMAL FORMS
................................... 125 3.3 OPERATOR NORMAL FORM
.................................... 133 4. APPLICATIONS OF THE GREIBACH
NORMAL FORM ....................... 134 4.1 SHAMIR*S THEOREM
........................................ 134 4.2 CHOMSKY-SCH¨
UTZENBERGER*S THEOREM ........................ 135 4.3 THE HARDEST
CONTEXT-FREE LANGUAGE .......................... 136 4.4 WECHLER*S
THEOREM ....................................... 138 5. PUSHDOWN MACHINES
.......................................... 138 5.1 PUSHDOWN AUTOMATA
...................................... 138 5.2 DETERMINISTIC PDA
........................................ 144 5.3 PUSHDOWN STORE
LANGUAGES ................................ 151 5.4 PUSHDOWN TRANSDUCERS
.................................... 154 6. SUBFAMILIES
.................................................. 156 6.1 LINEAR
LANGUAGES ......................................... 156 6.2
QUASI-RATIONAL LANGUAGES .................................. 160 6.3
STRONG QUASI-RATIONAL LANGUAGES ............................ 163 6.4
FINITE-TURN LANGUAGES ..................................... 164 6.5
COUNTER LANGUAGES ....................................... 165 6.6
PARENTHETIC LANGUAGES .................................... 167 6.7
SIMPLE LANGUAGES ........................................ 169 6.8 LL AND
LR LANGUAGES ..................................... 170 REFERENCES
..................................................... 172 CHAPTER 4.
ASPECTS OF CLASSICAL LANGUAGE THEORY ALEXANDRU MATEESCU AND ARTO SALOMAA
............................ 175 1. PHRASE-STRUCTURE GRAMMARS
.................................... 175 1.1 PHRASE-STRUCTURE GRAMMARS
AND TURING MACHINES ............. 176 1.2 NORMAL FORMS FOR
PHRASE-STRUCTURE GRAMMARS ................ 180 CONTENTS XI 1.3
REPRESENTATIONS OF RECURSIVELY ENUMERABLE LANGUAGES .......... 180 1.4
DECIDABILITY. RECURSIVE LANGUAGES .......................... 184 2.
CONTEXT-SENSITIVE GRAMMARS ................................... 186 2.1
CONTEXT-SENSITIVE AND MONOTONOUS GRAMMARS ................ 186 2.2
NORMAL FORMS FOR CONTEXT-SENSITIVE GRAMMARS ................ 190 2.3
WORKSPACE .............................................. 191 2.4 LINEAR
BOUNDED AUTOMATA ................................. 192 2.5 CLOSURE
PROPERTIES OF THE FAMILY CS ........................ 194 2.6 DECIDABLE
PROPERTIES OF THE FAMILY CS ....................... 196 2.7 ON SOME
RESTRICTIONS ON GRAMMARS ......................... 197 3. AFL-THEORY
................................................. 199 3.1 LANGUAGE
FAMILIES. CONES AND AFL*S ....................... 199 3.2 FIRST
TRANSDUCTIONS, THEN REGULAR OPERATIONS ................. 204 4.
WIJNGAARDEN (TWO-LEVEL) GRAMMARS ............................. 210 4.1
DEFINITIONS, EXAMPLES. THE GENERATIVE POWER ................. 210 4.2
MEMBERSHIP PROBLEM AND PARSING .......................... 214 4.3
W-GRAMMARS AND COMPLEXITY .............................. 218 5.
ATTRIBUTE GRAMMARS .......................................... 221 5.1
DEFINITIONS AND TERMINOLOGY ............................... 221 5.2
ALGORITHMS FOR TESTING THE CIRCULARITY ....................... 222 5.3
RESTRICTED ATTRIBUTE GRAMMARS ............................. 226 5.4
OTHER RESULTS ............................................ 229 6.
PATTERNS .................................................... 230 6.1
ERASING AND NONERASING PATTERNS ........................... 230 6.2 THE
EQUIVALENCE PROBLEM .................................. 232 6.3 THE
INCLUSION PROBLEM .................................... 234 6.4 THE
MEMBERSHIP PROBLEM ................................. 238 6.5 AMBIGUITY
.............................................. 238 6.6 MULTI-PATTERN
LANGUAGES. TERM REWRITING WITH PATTERNS ........ 241 7. PURE AND INDEXED
GRAMMARS. DERIVATION LANGUAGES ............... 242 7.1 PURE GRAMMARS
.......................................... 242 7.2 INDEXED GRAMMARS
....................................... 243 7.3 THE DERIVATION (SZILARD)
LANGUAGE .......................... 245 REFERENCES
..................................................... 246 CHAPTER 5. L
SYSTEMS LILA KARI, GRZEGORZ ROZENBERG, AND ARTO SALOMAA
................... 253 1. INTRODUCTION
................................................. 253 1.1 PARALLEL
REWRITING ........................................ 253 1.2 CALLITHAMNION
ROSEUM, A PRIMORDIAL ALGA .................... 254 1.3 LIFE, REAL AND
ARTIFICIAL .................................... 256 2. THE WORLD OF L,
AN OVERVIEW ................................... 257 2.1 ITERATED
MORPHISMS AND FINITE SUBSTITUTIONS: D0L AND 0L ...... 257 2.2 AUXILIARY
LETTERS AND OTHER AUXILIARY MODIFICATIONS ........... 264 2.3 TABLES,
INTERACTIONS, ADULTS, FRAGMENTATION .................. 268 XII CONTENTS
3. SAMPLE L TECHNIQUES: AVOIDING CELL DEATH IF POSSIBLE ..............
275 4. L DECISIONS ..................................................
281 4.1 GENERAL. SEQUENCES VERSUS LANGUAGES ........................ 281
4.2 D0L SEQUENCE EQUIVALENCE PROBLEM AND VARIATIONS ............ 285 5.
L GROWTH ................................................... 288 5.1
COMMUNICATION AND COMMUTATIVITY ........................ 288 5.2 MERGING
AND STAGES OF DEATH ............................... 294 5.3 STAGNATION
AND MALIGNANCY ................................ 298 6. L CODES, NUMBER
SYSTEMS, IMMIGRATION .......................... 301 6.1 MORPHISMS
APPLIED IN THE WAY OF A FUGUE .................... 301 6.2 AN EXCURSION
INTO NUMBER SYSTEMS ......................... 305 6.3 BOUNDED DELAY AND
IMMIGRATION ........................... 308 7. PARALLEL INSERTIONS AND
DELETIONS ................................ 312 8. SCATTERED VIEWS FROM
THE L PATH ............................... 322 REFERENCES
..................................................... 324 CHAPTER 6.
COMBINATORICS OF WORDS CHRISTIAN CHOFFRUT AND JUHANI KARHUM¨ AKI
......................... 329 1. INTRODUCTION
................................................. 329 2. PRELIMINARIES
................................................ 331 2.1 WORDS
.................................................. 332 2.2 PERIODS IN
WORDS ......................................... 334 2.3 REPETITIONS IN
WORDS ..................................... 337 2.4 MORPHISMS
.............................................. 338 2.5 FINITE SETS OF
WORDS ...................................... 339 3. SELECTED EXAMPLES OF
PROBLEMS ................................. 342 3.1 INJECTIVE MAPPINGS
BETWEEN F -SEMIGROUPS ................... 342 3.2 BINARY EQUALITY SETS
...................................... 347 3.3 SEPARATING WORDS VIA
AUTOMATA ............................ 351 4. DEFECT EFFECT
................................................. 354 4.1 BASIC
DEFINITIONS ......................................... 354 4.2 DEFECT
THEOREMS ......................................... 357 4.3 DEFECT EFFECT
OF SEVERAL RELATIONS ............................ 360 4.4 RELATIONS
WITHOUT THE DEFECT EFFECT ......................... 364 4.5 THE DEFECT
THEOREM FOR EQUATIONS .......................... 366 4.6 PROPERTIES OF
THE COMBINATORIAL RANK ........................ 367 5. EQUATIONS AS
PROPERTIES OF WORDS ............................... 370 5.1 MAKANIN*S
RESULT ......................................... 370 5.2 THE RANK OF AN
EQUATION .................................. 371 5.3 THE EXISTENTIAL
THEORY OF CONCATENATION ..................... 372 5.4 SOME RULES OF
THUMB FOR SOLVING EQUATIONS BY *HAND* ......... 374 6. PERIODICITY
.................................................. 376 6.1 DEFINITIONS
AND BASIC OBSERVATIONS .......................... 376 6.2 THE
PERIODICITY THEOREM OF FINE AND WILF ................... 377 CONTENTS
XIII 6.3 THE CRITICAL FACTORIZATION THEOREM ........................ 380
6.4 A CHARACTERIZATION OF ULTIMATELY PERIODIC WORDS .............. 385
7. FINITENESS CONDITIONS ......................................... 389
7.1 ORDERS AND QUASI-ORDERINGS ................................ 390 7.2
ORDERINGS ON WORDS ...................................... 391 7.3
SUBWORDS OF A GIVEN WORD ................................. 394 7.4
PARTIAL ORDERINGS AND AN UNAVOIDABILITY ..................... 395 7.5
BASICS ON THE RELATION QUASI-ORDERING * R .................... 398 7.6 A
COMPACTNESS PROPERTY .................................. 400 7.7 THE SIZE
OF AN EQUIVALENT SUBSYSTEM ........................ 404 7.8 A FINITENESS
CONDITION FOR FINITE SETS OF WORDS ................ 405 8. AVOIDABILITY
................................................. 408 8.1 PRELUDE
................................................. 408 8.2 THE BASIC
TECHNIQUES ..................................... 409 8.3 REPETITION-FREE
MORPHISMS ................................ 415 8.4 THE NUMBER OF
REPETITION-FREE WORDS ........................ 416 8.5 CHARACTERIZATIONS
OF BINARY 2 + -FREE WORDS ................... 418 8.6 AVOIDABLE PATTERNS
....................................... 422 9. SUBWORD COMPLEXITY
.......................................... 423 9.1 EXAMPLES AND BASIC
PROPERTIES ............................. 423 9.2 A CLASSIFICATION OF
COMPLEXITIES OF FIXED POINTS OF ITERATED MORPHISMS
.............................................. 427 REFERENCES
..................................................... 431 CHAPTER 7.
MORPHISMS TERO HARJU AND JUHANI KARHUM¨ AKI
................................ 439 1. INTRODUCTION
................................................. 439 2. PRELIMINARIES
................................................ 441 2.1 WORDS AND
MORPHISMS .................................... 441 2.2 RATIONAL
TRANSDUCTIONS .................................... 442 2.3 WORD PROBLEM
FOR FINITELY PRESENTED SEMIGROUPS .............. 443 2.4 SEMI-THUE
SYSTEMS ....................................... 445 3. POST
CORRESPONDENCE PROBLEM: DECIDABLE CASES .................... 446 3.1
BASIC DECIDABLE CASES ..................................... 446 3.2
GENERALIZED POST CORRESPONDENCE PROBLEM ................... 449 3.3
(G)PCP IN THE BINARY CASE ................................ 451 4.
UNDECIDABILITY OF PCP WITH APPLICATIONS ........................ 456 4.1
PCP(9) IS UNDECIDABLE .................................... 456 4.2 A
MIXED MODIFICATION OF PCP ............................. 460 4.3 COMMON
RELATIONS IN SUBMONOIDS .......................... 461 4.4 MORTALITY OF
MATRIX MONOIDS ............................... 463 4.5 ZEROS IN UPPER
CORNERS .................................... 466 5. EQUALITY SETS
................................................ 468 5.1 BASIC
PROPERTIES ......................................... 468 5.2 SOME
RESTRICTED CASES ..................................... 470 XIV CONTENTS
5.3 ON THE REGULARITY OF EQUALITY SETS .......................... 471
5.4 AN EFFECTIVE CONSTRUCTION OF REGULAR EQUALITY SETS ............. 474
6. EHRENFEUCHT*S CONJECTURE AND SYSTEMS OF EQUATIONS ............... 477
6.1 SYSTEMS OF EQUATIONS ..................................... 478 6.2
EHRENFEUCHT*S CONJECTURE ................................. 478 6.3
EQUATIONS WITH CONSTANTS ................................. 483 6.4 ON
GENERALIZATIONS OF EHRENFEUCHT*S CONJECTURE .............. 484 6.5
EHRENFEUCHT*S CONJECTURE FOR MORE GENERAL MAPPINGS ......... 486 7.
EFFECTIVE SUBCASES ............................................ 487 7.1
FINITE SYSTEMS OF EQUATIONS ................................ 487 7.2 THE
EFFECTIVENESS OF TEST SETS ............................... 488 7.3
APPLICATIONS TO PROBLEMS OF ITERATED MORPHISMS .............. 490 8.
MORPHIC REPRESENTATIONS OF LANGUAGES ........................... 492 8.1
CLASSICAL RESULTS .......................................... 492 8.2
REPRESENTATIONS OF RECURSIVELY ENUMERABLE LANGUAGES .......... 493 8.3
REPRESENTATIONS OF REGULAR LANGUAGES ....................... 496 8.4
REPRESENTATIONS OF RATIONAL TRANSDUCTIONS ................... 498 9.
EQUIVALENCE PROBLEM ON LANGUAGES ............................. 500 9.1
MORPHIC EQUIVALENCE ON LANGUAGES .......................... 501 9.2 MORE
GENERAL MAPPINGS ................................... 502 10. PROBLEMS
................................................... 504 REFERENCES
..................................................... 505 CHAPTER 8.
CODES HELMUT J¨ URGENSEN AND STAVROS KONSTANTINIDIS
...................... 511 1. INTRODUCTION
................................................. 511 2. NOTATION AND
BASIC NOTIONS .................................... 516 3. CHANNELS AND
CODES .......................................... 522 4. ERROR
CORRECTION, SYNCHRONIZATION, DECODING ...................... 530 5.
HOMOPHONIC CODES ........................................... 541 6.
METHODS FOR DEFINING CODES .................................... 545 7. A
HIERARCHY OF CLASSES OF CODES ................................. 558 8.
THE SYNTACTIC MONOID OF A CODE ................................ 567 9.
DECIDING PROPERTIES OF CODES ................................... 575 10.
MAXIMAL CODES .............................................. 582 11.
SOLID CODES .................................................. 585 12.
CODES FOR NOISY CHANNELS ...................................... 595 13.
CONCLUDING REMARKS .......................................... 600
REFERENCES ..................................................... 600
CHAPTER 9. SEMIRINGS AND FORMAL POWER SERIES WERNER KUICH
.................................................. 609 1. INTRODUCTION
................................................. 609 2. SEMIRINGS,
FORMAL POWER SERIES AND MATRICES ..................... 610 3. ALGEBRAIC
SYSTEMS ............................................ 619 CONTENTS XV 4.
AUTOMATA AND LINEAR SYSTEMS .................................. 626 5.
NORMAL FORMS FOR ALGEBRAIC SYSTEMS ............................. 631 6.
PUSHDOWN AUTOMATA AND ALGEBRAIC SYSTEMS ...................... 637 7.
TRANSDUCTIONS AND ABSTRACT FAMILIES OF ELEMENTS .................. 644
8. THE THEOREM OF PARIKH ....................................... 658 9.
LINDENMAYERIAN ALGEBRAIC POWER SERIES .......................... 662 10.
SELECTED TOPICS AND BIBLIOGRAPHICAL REMARKS ...................... 667
REFERENCES ..................................................... 671
CHAPTER 10. SYNTACTIC SEMIGROUPS JEAN-ERIC PIN
.................................................. 679 1. INTRODUCTION
................................................. 679 2. DEFINITIONS
.................................................. 681 2.1 RELATIONS
............................................... 681 2.2 SEMIGROUPS
............................................. 681 2.3 MORPHISMS
.............................................. 682 2.4 GROUPS
................................................. 683 2.5 FREE
SEMIGROUPS ......................................... 684 2.6 ORDER
IDEALS ............................................. 684 2.7 IDEMPOTENTS
............................................. 685 2.8 GREEN*S RELATIONS
......................................... 685 2.9 CATEGORIES
.............................................. 686 3. RECOGNIZABILITY
.............................................. 687 3.1 RECOGNITION BY
ORDERED SEMIGROUPS ......................... 687 3.2 SYNTACTIC ORDER
.......................................... 688 3.3 RECOGNIZABLE SETS
........................................ 689 3.4 HOW TO COMPUTE THE
SYNTACTIC SEMIGROUP? ................... 691 4. VARIETIES
.................................................... 692 4.1 IDENTITIES
............................................... 692 4.2 THE VARIETY
THEOREM ...................................... 695 5. EXAMPLES OF
VARIETIES ......................................... 697 5.1 STANDARD
EXAMPLES ....................................... 698 5.2 COMMUTATIVE
VARIETIES .................................... 699 5.3 VARIETIES DEFINED
BY LOCAL PROPERTIES ........................ 701 5.4 ALGORITHMIC
PROBLEMS ..................................... 705 6. SOME ALGEBRAIC
TOOLS .......................................... 705 6.1 RELATIONAL
MORPHISMS .................................... 706 6.2 MAL*CEV PRODUCT
......................................... 708 6.3 SEMIDIRECT PRODUCT
....................................... 708 6.4 REPRESENTABLE
TRANSDUCTIONS ............................... 712 7. THE CONCATENATION
PRODUCT .................................... 716 7.1 POLYNOMIAL CLOSURE
....................................... 716 7.2 UNAMBIGUOUS AND
DETERMINISTIC POLYNOMIAL CLOSURE ........... 717 7.3 VARIETIES CLOSED
UNDER PRODUCT ............................. 718 7.4 THE OPERATIONS L *
LAA * AND L * A * AL . . . . . . . . . . . . . . . . . . 719 XVI
CONTENTS 7.5 PRODUCT WITH COUNTERS ....................................
720 7.6 VARIETIES CLOSED UNDER PRODUCT WITH COUNTER .................
721 8. CONCATENATION HIERARCHIES .....................................
722 8.1 STRAUBING-TH´ ERIEN*S HIERARCHY .............................
723 8.2 DOT-DEPTH HIERARCHY ...................................... 727
8.3 THE GROUP HIERARCHY ...................................... 728 8.4
SUBHIERARCHIES ........................................... 730 8.5
BOOLEAN-POLYNOMIAL CLOSURE ............................... 731 9. CODES
AND VARIETIES .......................................... 733 10.
OPERATORS ON LANGUAGES AND VARIETIES ........................... 735 11.
FURTHER TOPICS ............................................... 736
REFERENCES ..................................................... 738
CHAPTER 11. REGULARITY AND FINITENESS CONDITIONS ALDO DE LUCA AND
STEFANO VARRICCHIO .............................. 747 1. COMBINATORICS
ON WORDS ...................................... 749 1.1 INFINITE WORDS
AND UNAVOIDABLE REGULARITIES .................. 749 1.2 THE RAMSEY
THEOREM ..................................... 751 1.3 THE VAN DER
WAERDEN THEOREM ............................ 753 1.4 THE SHIRSHOV
THEOREM .................................... 754 1.5 UNIFORMLY RECURRENT
WORDS ................................ 756 1.6 SOME EXTENSIONS OF THE
SHIRSHOV THEOREM .................... 759 2. FINITENESS CONDITIONS FOR
SEMIGROUPS ............................ 764 2.1 THE BURNSIDE PROBLEM
.................................... 764 2.2 PERMUTATION PROPERTY
.................................... 767 2.3 CHAIN CONDITIONS AND J
-DEPTH DECOMPOSITION ............... 771 2.4 ITERATION PROPERTY
........................................ 775 2.5 REPETITIVE MORPHISMS
AND SEMIGROUPS ...................... 779 3. FINITELY RECOGNIZABLE
SEMIGROUPS ............................... 782 3.1 THE FACTOR SEMIGROUP
..................................... 783 3.2 ON A CONJECTURE OF
BRZOZOWSKI ............................. 785 3.3 PROBLEMS AND RESULTS
..................................... 786 4. NON-UNIFORM REGULARITY
CONDITIONS .............................. 789 4.1 PUMPING PROPERTIES
...................................... 790 4.2 PERMUTATIVE PROPERTY
..................................... 792 5. WELL QUASI-ORDERS
............................................ 795 5.1 THE GENERALIZED
MYHILL-NERODE THEOREM .................... 796 5.2 QUASI-ORDERS AND
REWRITING SYSTEMS ......................... 798 5.3 A REGULARITY
CONDITION FOR PERMUTABLE LANGUAGES ............. 800 5.4 A REGULARITY
CONDITION FOR ALMOST-COMMUTATIVE LANGUAGES ...... 803 REFERENCES
..................................................... 806 CONTENTS XVII
CHAPTER 12. FAMILIES GENERATED BY GRAMMARS AND L SYSTEMS GHEORGHE P* AUN
AND ARTO SALOMAA ................................ 811 1. GRAMMAR FORMS
.............................................. 811 1.1 INTRODUCTION:
STRUCTURAL SIMILARITY .......................... 811 1.2 INTERPRETATIONS
AND GRAMMATICAL FAMILIES .................... 813 1.3 CLOSURE PROPERTIES
AND NORMAL FORMS ....................... 818 1.4 COMPLETENESS
............................................ 821 1.5 LINGUISTICAL
FAMILIES AND UNDECIDABILITY ..................... 825 2. L FORMS
..................................................... 829 2.1 E0L AND
ET0L FORMS ..................................... 829 2.2 GOOD AND VERY
COMPLETE FORMS ............................ 834 2.3 PD0L FORMS
............................................. 835 3. DENSITY
..................................................... 838 3.1 DENSE
HIERARCHIES OF GRAMMATICAL FAMILIES ................... 838 3.2 COLOR
FAMILIES OF GRAPHS AND LANGUAGE INTERPRETATIONS ......... 843 3.3
MAXIMAL DENSE INTERVALS .................................. 847 4.
EXTENSIONS AND VARIATIONS ..................................... 851 4.1
CONTEXT-DEPENDENT GRAMMAR AND L FORMS ................... 851 4.2 MATRIX
FORMS ............................................ 853 4.3 FURTHER
VARIANTS ......................................... 856 REFERENCES
..................................................... 859 INDEX
......................................................... 863 AUTHORS*
ADDRESSES JEAN-MICHEL AUTEBERT UFR D*INFORMATIQUE, UNIVERSIT´ E DENIS
DIDEROT-PARIS 7 2, PLACE JUSSIEU, F-75005 PARIS, CEDEX 05, FRANCE
AUTEBERT@LITP.IBP.FR JEAN BERSTEL LITP, IBP, UNIVERSIT´ E PIERRE ET
MARIE CURIE LABORATOIRE LITP, INSTITUT BLAISE PASCAL 4, PLACE JUSSIEU,
F-75252 PARIS, CEDEX 05, FRANCE JEAN.BERSTEL@LITP.IBP.FR LUC BOASSON
LITP, IBP, UNIVERSIT´ E DENIS DIDEROT 2, PLACE JUSSIEU, F-75251 PARIS
CEDEX 05, FRANCE LUC.BOASSON@LITP.IBP.FR CHRISTIAN CHOFFRUT LITP,
UNIVERSIT´ E DE PARIS VI 4, PLACE JUSSIEU, F-75252 PARIS CEDEX 05,
FRANCE CC@LITP.IBP.FR TERO HARJU DEPARTMENT OF MATHEMATICS, UNIVERSITY
OF TURKU FIN-20014 TURKU, FINLAND HARJU@SARA.UTU.FI HELMUT J¨ URGENSEN
DEPARTMENT OF COMPUTER SCIENCE, THE UNIVERSITY OF WESTERN ONTARIO
LONDON, ONTARIO N6A 5B7, CANADA HELMUT@UWO.CA AND INSTITUT F¨ UR
INFORMATIK, UNIVERSIT¨ AT POTSDAM AM NEUEN PALAIS 10, D-14469 POTSDAM,
GERMANY HELMUT@MPAG-INF.UNI-POTSDAM.DE JUHANI KARHUM¨ AKI DEPARTMENT OF
MATHEMATICS, UNIVERSITY OF TURKU FIN-20014 TURKU, FINLAND
KARHUMAK@UTU.FI LILA KARI DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF
WESTERN ONTARIO LONDON, ONTARIO N6A 5B7, CANADA LILA@CSD.UWO.CA XXIV
AUTHORS* ADDRESSES STAVROS KONSTANTINIDIS DEPARTMENT OF MATHEMATICS AND
COMPUTER SCIENCE, UNIVERSITY OF LETHBRIDGE 4401 UNIVERSITY DRIVE,
LETHBRIDGE, ALBERTA T1K 3M4 CANADA STAVROS@CSD.ULETH.CA WERNER KUICH
ABTEILUNG F¨ UR THEORETISCHE INFORMATIK, INSTITUT F¨ UR ALGEBRA UND
DISKRETE MATHEMATIK, TECHNISCHE UNIVERSIT¨ AT WIEN WIEDNER HAUPTSTRASSE
8-10, A-1040 WIEN, AUSTRIA KUICH@EMAIL.TUWIEN.AC.AT ALDO DE LUCA
DIPARTIMENTO DI MATEMATICA, UNIVERSIT` A DI ROMA *LA SAPIENZA* PIAZZALE
ALDO MORO 2, I-00185 ROMA, ITALY DELUCA@MERCURIO.MAT.UNIROMA1.IT
ALEXANDRU MATEESCU FACULTY OF MATHEMATICS, UNIVERSITY OF BUCHAREST
ACADEMIEI 14, RO-70109 BUCHAREST, ROMANIA AND TURKU CENTRE FOR COMPUTER
SCIENCE (TUCS) LEMNINK¨ AISENKATU 14 A, FIN-20520 TURKU, FINLAND
MATEESCU@SARA.UTU.FI GHEORGHE P* AUN INSTITUTE OF MATHEMATICS OF THE
ROMANIAN ACADEMY P.O. BOX 1-764, RO-70700 BUCHAREST, ROMANIA
GPAUN@IMAR.RO JEAN-ERIC PIN LITP, IBP, CNRS, UNIVERSIT´ E PARIS VI 4,
PLACE JUSSIEU, F-75252 PARIS CEDEX 05, FRANCE JEP@LITP.IBP.FR GRZEGORZ
ROZENBERG DEPARTMENT OF COMPUTER SCIENCE, LEIDEN UNIVERSITY P.O. BOX
9512, NL-2300 RA LEIDEN, THE NETHERLANDS AND DEPARTMENT OF COMPUTER
SCIENCE UNIVERSITY OF COLORADO AT BOULDER, CAMPUS 430 BOULDER, CO 80309,
U.S.A. ROZENBER@WI.LEIDENUNIV.NL ARTO SALOMAA ACADEMY OF FINLAND AND
TURKU CENTRE FOR COMPUTER SCIENCE (TUCS) LEMNINK¨ AISENKATU 14 A,
FIN-20520 TURKU, FINLAND ASALOMAA@SARA.CC.UTU.FI STEFANO VARRICCHIO
DIPARTIMENTO DI MATEMATICA, UNIVERSIT` A DI L*AQUILA VIA VETOIO LOC.
COPPITO, I-67100 L*AQUILA, ITALY VARRICCH@UNIVAQ.IT SHENG YU DEPARTMENT
OF COMPUTER SCIENCE, UNIVERSITY OF WESTERN ONTARIO LONDON, ONTARIO N6A
5B7, CANADA SYU@CSD.UWO.CA
|
any_adam_object | 1 |
author_GND | (DE-588)1079124624 |
building | Verbundindex |
bvnumber | BV011247956 |
classification_rvk | CC 4700 ST 130 ST 136 |
ctrlnum | (OCoLC)174236249 (DE-599)BVBBV011247956 |
discipline | Informatik Philosophie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01998nam a2200493 cc4500</leader><controlfield tag="001">BV011247956</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">970314s1997 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540604200</subfield><subfield code="9">3-540-60420-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)174236249</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011247956</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 4700</subfield><subfield code="0">(DE-625)17630:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 130</subfield><subfield code="0">(DE-625)143588:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 136</subfield><subfield code="0">(DE-625)143591:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handbook of formal languages</subfield><subfield code="n">1</subfield><subfield code="p">Word, language, grammar</subfield><subfield code="c">G. Rozenberg ... (eds.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 873 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Formale Sprache</subfield><subfield code="0">(DE-588)4017848-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automatentheorie</subfield><subfield code="0">(DE-588)4003953-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Informatik</subfield><subfield code="0">(DE-588)4026894-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Formale Sprache</subfield><subfield code="0">(DE-588)4017848-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Informatik</subfield><subfield code="0">(DE-588)4026894-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Formale Sprache</subfield><subfield code="0">(DE-588)4017848-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Automatentheorie</subfield><subfield code="0">(DE-588)4003953-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Formale Sprache</subfield><subfield code="0">(DE-588)4017848-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Formale Sprache</subfield><subfield code="0">(DE-588)4017848-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rozenberg, Grzegorz</subfield><subfield code="d">1942-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1079124624</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV011247946</subfield><subfield code="g">1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007549872&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007549872</subfield></datafield></record></collection> |
id | DE-604.BV011247956 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:06:31Z |
institution | BVB |
isbn | 3540604200 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007549872 |
oclc_num | 174236249 |
open_access_boolean | |
owner | DE-739 DE-20 DE-384 DE-19 DE-BY-UBM DE-703 DE-29 DE-29T DE-91G DE-BY-TUM DE-473 DE-BY-UBG DE-706 DE-634 DE-11 DE-188 |
owner_facet | DE-739 DE-20 DE-384 DE-19 DE-BY-UBM DE-703 DE-29 DE-29T DE-91G DE-BY-TUM DE-473 DE-BY-UBG DE-706 DE-634 DE-11 DE-188 |
physical | XVII, 873 S. |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer |
record_format | marc |
spelling | Handbook of formal languages 1 Word, language, grammar G. Rozenberg ... (eds.) Berlin [u.a.] Springer 1997 XVII, 873 S. txt rdacontent n rdamedia nc rdacarrier Formale Sprache (DE-588)4017848-1 gnd rswk-swf Mathematische Logik (DE-588)4037951-6 gnd rswk-swf Automatentheorie (DE-588)4003953-5 gnd rswk-swf Informatik (DE-588)4026894-9 gnd rswk-swf Formale Sprache (DE-588)4017848-1 s Informatik (DE-588)4026894-9 s DE-604 Mathematische Logik (DE-588)4037951-6 s Automatentheorie (DE-588)4003953-5 s Rozenberg, Grzegorz 1942- Sonstige (DE-588)1079124624 oth (DE-604)BV011247946 1 SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007549872&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Handbook of formal languages Formale Sprache (DE-588)4017848-1 gnd Mathematische Logik (DE-588)4037951-6 gnd Automatentheorie (DE-588)4003953-5 gnd Informatik (DE-588)4026894-9 gnd |
subject_GND | (DE-588)4017848-1 (DE-588)4037951-6 (DE-588)4003953-5 (DE-588)4026894-9 |
title | Handbook of formal languages |
title_auth | Handbook of formal languages |
title_exact_search | Handbook of formal languages |
title_full | Handbook of formal languages 1 Word, language, grammar G. Rozenberg ... (eds.) |
title_fullStr | Handbook of formal languages 1 Word, language, grammar G. Rozenberg ... (eds.) |
title_full_unstemmed | Handbook of formal languages 1 Word, language, grammar G. Rozenberg ... (eds.) |
title_short | Handbook of formal languages |
title_sort | handbook of formal languages word language grammar |
topic | Formale Sprache (DE-588)4017848-1 gnd Mathematische Logik (DE-588)4037951-6 gnd Automatentheorie (DE-588)4003953-5 gnd Informatik (DE-588)4026894-9 gnd |
topic_facet | Formale Sprache Mathematische Logik Automatentheorie Informatik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007549872&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV011247946 |
work_keys_str_mv | AT rozenberggrzegorz handbookofformallanguages1 |