Undergraduate analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
New York ; Berlin ; Heidelberg ; Barcelona ; Budapest ; Hong Kon
Springer
1997
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Undergraduate texts in mathematics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Rev. version of: Analysis 1. |
Beschreibung: | XV, 642 S. graph. Darst. |
ISBN: | 0387948414 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV011230871 | ||
003 | DE-604 | ||
005 | 19971112 | ||
007 | t | ||
008 | 970226s1997 gw d||| |||| 00||| ger d | ||
016 | 7 | |a 949567736 |2 DE-101 | |
020 | |a 0387948414 |c Pp. : DM 78.00 |9 0-387-94841-4 | ||
035 | |a (OCoLC)263858173 | ||
035 | |a (DE-599)BVBBV011230871 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-91 |a DE-91G |a DE-521 |a DE-11 | ||
050 | 0 | |a QA300.L278 1997 | |
082 | 0 | |a 515/.8 20 | |
084 | |a SK 400 |0 (DE-625)143237: |2 rvk | ||
084 | |a 27 |2 sdnb | ||
084 | |a MAT 260f |2 stub | ||
100 | 1 | |a Lang, Serge |d 1927-2005 |e Verfasser |0 (DE-588)119305119 |4 aut | |
245 | 1 | 0 | |a Undergraduate analysis |c Serge Lang |
250 | |a 2. ed. | ||
264 | 1 | |a New York ; Berlin ; Heidelberg ; Barcelona ; Budapest ; Hong Kon |b Springer |c 1997 | |
300 | |a XV, 642 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Undergraduate texts in mathematics | |
500 | |a Rev. version of: Analysis 1. | ||
650 | 4 | |a Mathematical analysis | |
650 | 0 | 7 | |a Infinitesimalrechnung |0 (DE-588)4072798-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebra |0 (DE-588)4001156-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Katze |0 (DE-588)4030046-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analysis |0 (DE-588)4001865-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Analysis |0 (DE-588)4001865-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Katze |0 (DE-588)4030046-8 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Infinitesimalrechnung |0 (DE-588)4072798-1 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
689 | 3 | 0 | |a Algebra |0 (DE-588)4001156-2 |D s |
689 | 3 | |8 3\p |5 DE-604 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007536415&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-007536415 |
Datensatz im Suchindex
_version_ | 1807501667449438208 |
---|---|
adam_text |
CONTENTS
FOREWORD
TO
THE
FIRST
EDITION
.
V
FOREWORD
TO
THE
SECOND
EDITION
.
IX
PART
ONE
REVIEW
OF
CALCULUS
.
1
CHAPTER
0
SETS
AND
MAPPINGS
.
3
1.
SETS
.
3
2.
MAPPINGS
.
4
3.
NATURAL
NUMBERS
AND
INDUCTION
.
8
4.
DENUMERABLE
SETS
.
11
5.
EQUIVALENCE
RELATIONS
.
15
CHAPTER
I
REAL
NUMBERS
.
17
1.
ALGEBRAIC
AXIOMS
.
17
2.
ORDERING
AXIOMS
.
21
3.
INTEGERS
AND
RATIONAL
NUMBERS
.
25
4.
THE
COMPLETENESS
AXIOM
.
29
CHAPTER
II
LIMITS
AND
CONTINUOUS
FUNCTIONS
.
34
1.
SEQUENCES
OF
NUMBERS
.
34
2.
FUNCTIONS
AND
LIMITS
.
41
XII
CONTENTS
3.
LIMITS
WITH
INFINITY
.
50
4.
CONTINUOUS
FUNCTIONS
.
59
CHAPTER
III
DIFFERENTIATION
.
66
1.
PROPERTIES
OF
THE
DERIVATIVE
.
66
2.
MEAN
VALUE
THEOREM
.
70
3.
INVERSE
FUNCTIONS
.
74
CHAPTER
IV
ELEMENTARY
FUNCTIONS
.
78
1.
EXPONENTIAL
.
78
2.
LOGARITHM
.
83
3.
SINE
AND
COSINE
.
90
4.
COMPLEX
NUMBERS
.
95
CHAPTER
V
THE
ELEMENTARY
REAL
INTEGRAL
.
101
1.
CHARACTERIZATION
OF
THE
INTEGRAL
.
101
2.
PROPERTIES
OF
THE
INTEGRAL
.
104
3.
TAYLOR
'
S
FORMULA
.
109
4.
ASYMPTOTIC
ESTIMATES
AND
STIRLING
'
S
FORMULA
.
116
PART
TWO
CONVERGENCE
.
127
CHAPTER
VI
NORMED
VECTOR
SPACES
.
129
1.
VECTOR
SPACES
.
129
2.
NORMED
VECTOR
SPACES
.
131
3.
N-SPACE
AND
FUNCTION
SPACES
.
137
4.
COMPLETENESS
.
143
5.
OPEN
AND
CLOSED
SETS
.
151
CHAPTER
VII
LIMITS
.
160
1.
BASIC
PROPERTIES
.
160
2.
CONTINUOUS
MAPS
.
170
3.
LIMITS
IN
FUNCTION
SPACES
.
179
4.
COMPLETION
OF
A
NORMED
VECTOR
SPACE
.
188
CONTENTS
XIII
CHAPTER
VIII
COMPACTNESS
.
193
1.
BASIC
PROPERTIES
OF
COMPACT
SETS
.
193
2.
CONTINUOUS
MAPS
ON
COMPACT
SETS
.
197
3.
ALGEBRAIC
CLOSURE
OF
THE
COMPLEX
NUMBERS
.
201
4.
RELATION
WITH
OPEN
COVERINGS
.
203
CHAPTER
IX
SERIES
.
206
1.
BASIC
DEFINITIONS
.
206
2.
SERIES
OF
POSITIVE
NUMBERS
.
208
3.
NON-ABSOLUTE
CONVERGENCE
.
217
4.
ABSOLUTE
CONVERGENCE
IN
VECTOR
SPACES
.
225
5.
ABSOLUTE
AND
UNIFORM
CONVERGENCE
.
229
6.
POWER
SERIES
.
234
7.
DIFFERENTIATION
AND
INTEGRATION
OF
SERIES
.
239
CHAPTER
X
THE
INTEGRAL
IN
ONE
VARIABLE
.
246
1.
EXTENSION
THEOREM
FOR
LINEAR
MAPS
.
246
2.
INTEGRAL
OF
STEP
MAPS
.
248
3.
APPROXIMATION
BY
STEP
MAPS
.
252
4.
PROPERTIES
OF
THE
INTEGRAL
.
255
APPENDIX.
THE
LEBESGUE
INTEGRAL
.
262
5.
THE
DERIVATIVE
.
267
6.
RELATION
BETWEEN
THE
INTEGRAL
AND
THE
DERIVATIVE
.
272
7.
INTERCHANGING
DERIVATIVES
AND
INTEGRALS
.
275
PART
THREE
APPLICATIONS
OF
THE
INTEGRAL
.
281
CHAPTER
XI
APPROXIMATION
WITH
CONVOLUTIONS
.
283
1.
DIRAC
SEQUENCES
.
283
2.
THE
WEIERSTRASS
THEOREM
.
287
CHAPTER
XII
FOURIER
SERIES
.
291
1.
HERMITIAN
PRODUCTS
AND
ORTHOGONALITY
.
291
2.
TRIGONOMETRIC
POLYNOMIALS
AS
A
TOTAL
FAMILY
.
306
3.
EXPLICIT
UNIFORM
APPROXIMATION
.
311
4.
POINTWISE
CONVERGENCE
.
317
XIV
CONTENTS
CHAPTER
XIII
IMPROPER
INTEGRALS
.
326
1.
DEFINITION
.
326
2.
CRITERIA
FOR
CONVERGENCE
.
330
3.
INTERCHANGING
DERIVATIVES
AND
INTEGRALS
.
336
4.
THE
HEAT
KERNEL
.
347
CHAPTER
XIV
THE
FOURIER
INTEGRAL
.
353
1.
THE
SCHWARTZ
SPACE
.
353
2.
THE
FOURIER
INVERSION
FORMULA
.
359
3.
AN
EXAMPLE
OF
FOURIER
TRANSFORM
NOT
IN
THE
SCHWARTZ
SPACE
.
363
PART
FOUR
CALCULUS
IN
VECTOR
SPACES
.
369
CHAPTER
XV
FUNCTIONS
ON
N-SPACE
.
371
1.
PARTIAL
DERIVATIVES
.
371
2.
DIFFERENTIABILITY
AND
THE
CHAIN
RULE
.
379
3.
POTENTIAL
FUNCTIONS
.
388
4.
CURVE
INTEGRALS
.
395
5.
TAYLOR
'
S
FORMULA
.
405
6.
MAXIMA
AND
THE
DERIVATIVE
.
411
CHAPTER
XVI
THE
WINDING
NUMBER
AND
GLOBAL
POTENTIAL
FUNCTIONS
.
417
1.
ANOTHER
DESCRIPTION
OF
THE
INTEGRAL
ALONG
A
PATH
.
418
2.
THE
WINDING
NUMBER
AND
HOMOLOGY
.
420
3.
PROOF
OF
THE
GLOBAL
INTEGRABILITY
THEOREM
.
432
4.
THE
INTEGRAL
OVER
CONTINUOUS
PATHS
.
438
5.
THE
HOMOTOPY
FORM
OF
THE
INTEGRABILITY
THEOREM
.
444
6.
MORE
ON
HOMOTOPIES
.
450
CHAPTER
XVII
DERIVATIVES
IN
VECTOR
SPACES
.
455
1.
THE
SPACE
OF
CONTINUOUS
LINEAR
MAPS
.
455
2.
THE
DERIVATIVE
AS
A
LINEAR
MAP
.
463
3.
PROPERTIES
OF
THE
DERIVATIVE
.
468
4.
MEAN
VALUE
THEOREM
.
473
CONTENTS
XV
5.
THE
SECOND
DERIVATIVE
.
.
477
6.
HIGHER
DERIVATIVES
AND
TAYLOR
'
S
FORMULA
.
487
7.
PARTIAL
DERIVATIVES
.
495
8.
DIFFERENTIATING
UNDER
THE
INTEGRAL
SIGN
.
499
CHAPTER
XVIII
INVERSE
MAPPING
THEOREM
.
502
1.
THE
SHRINKING
LEMMA
.
502
2.
INVERSE
MAPPINGS,
LINEAR
CASE
.
506
3.
THE
INVERSE
MAPPING
THEOREM
.
512
4.
IMPLICIT
FUNCTIONS
AND
CHARTS
.
520
5.
PRODUCT
DECOMPOSITIONS
.
526
CHAPTER
XIX
ORDINARY
DIFFERENTIAL
EQUATIONS
.
538
1.
LOCAL
EXISTENCE
AND
UNIQUENESS
.
538
2.
APPROXIMATE
SOLUTIONS
.
548
3.
LINEAR
DIFFERENTIAL
EQUATIONS
.
552
4.
DEPENDENCE
ON
INITIAL
CONDITIONS
.
557
PART
FIVE
MULTIPLE
INTEGRATION
.
563
CHAPTER
XX
MULTIPLE
INTEGRALS
.
565
1.
ELEMENTARY
MULTIPLE
INTEGRATION
.
565
2.
CRITERIA
FOR
ADMISSIBILITY
.
578
3.
REPEATED
INTEGRALS
.
581
4.
CHANGE
OF
VARIABLES
.
584
5.
VECTOR
FIELDS
ON
SPHERES
.
602
CHAPTER
XXI
DIFFERENTIAL
FORMS
.
607
1.
DEFINITIONS
.
607
2.
STOKES
'
THEOREM
FOR
A
RECTANGLE
.
613
3.
INVERSE
IMAGE
OF
A
FORM
.
616
4.
STOKES
'
FORMULA
FOR
SIMPLICES
.
620
APPENDIX
.
627
INDEX
.
635 |
any_adam_object | 1 |
author | Lang, Serge 1927-2005 |
author_GND | (DE-588)119305119 |
author_facet | Lang, Serge 1927-2005 |
author_role | aut |
author_sort | Lang, Serge 1927-2005 |
author_variant | s l sl |
building | Verbundindex |
bvnumber | BV011230871 |
callnumber-first | Q - Science |
callnumber-label | QA300 |
callnumber-raw | QA300.L278 1997 |
callnumber-search | QA300.L278 1997 |
callnumber-sort | QA 3300 L278 41997 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 400 |
classification_tum | MAT 260f |
ctrlnum | (OCoLC)263858173 (DE-599)BVBBV011230871 |
dewey-full | 515/.820 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.8 20 |
dewey-search | 515/.8 20 |
dewey-sort | 3515 18 220 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV011230871</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19971112</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">970226s1997 gw d||| |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">949567736</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387948414</subfield><subfield code="c">Pp. : DM 78.00</subfield><subfield code="9">0-387-94841-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)263858173</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011230871</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA300.L278 1997</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.8 20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 400</subfield><subfield code="0">(DE-625)143237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">27</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 260f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lang, Serge</subfield><subfield code="d">1927-2005</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)119305119</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Undergraduate analysis</subfield><subfield code="c">Serge Lang</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York ; Berlin ; Heidelberg ; Barcelona ; Budapest ; Hong Kon</subfield><subfield code="b">Springer</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 642 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Undergraduate texts in mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Rev. version of: Analysis 1.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Infinitesimalrechnung</subfield><subfield code="0">(DE-588)4072798-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Katze</subfield><subfield code="0">(DE-588)4030046-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Katze</subfield><subfield code="0">(DE-588)4030046-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Infinitesimalrechnung</subfield><subfield code="0">(DE-588)4072798-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007536415&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007536415</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV011230871 |
illustrated | Illustrated |
indexdate | 2024-08-16T00:25:15Z |
institution | BVB |
isbn | 0387948414 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007536415 |
oclc_num | 263858173 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-521 DE-11 |
owner_facet | DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-521 DE-11 |
physical | XV, 642 S. graph. Darst. |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer |
record_format | marc |
series2 | Undergraduate texts in mathematics |
spelling | Lang, Serge 1927-2005 Verfasser (DE-588)119305119 aut Undergraduate analysis Serge Lang 2. ed. New York ; Berlin ; Heidelberg ; Barcelona ; Budapest ; Hong Kon Springer 1997 XV, 642 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Undergraduate texts in mathematics Rev. version of: Analysis 1. Mathematical analysis Infinitesimalrechnung (DE-588)4072798-1 gnd rswk-swf Algebra (DE-588)4001156-2 gnd rswk-swf Katze (DE-588)4030046-8 gnd rswk-swf Analysis (DE-588)4001865-9 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Analysis (DE-588)4001865-9 s DE-604 Katze (DE-588)4030046-8 s 1\p DE-604 Infinitesimalrechnung (DE-588)4072798-1 s 2\p DE-604 Algebra (DE-588)4001156-2 s 3\p DE-604 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007536415&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lang, Serge 1927-2005 Undergraduate analysis Mathematical analysis Infinitesimalrechnung (DE-588)4072798-1 gnd Algebra (DE-588)4001156-2 gnd Katze (DE-588)4030046-8 gnd Analysis (DE-588)4001865-9 gnd |
subject_GND | (DE-588)4072798-1 (DE-588)4001156-2 (DE-588)4030046-8 (DE-588)4001865-9 (DE-588)4123623-3 |
title | Undergraduate analysis |
title_auth | Undergraduate analysis |
title_exact_search | Undergraduate analysis |
title_full | Undergraduate analysis Serge Lang |
title_fullStr | Undergraduate analysis Serge Lang |
title_full_unstemmed | Undergraduate analysis Serge Lang |
title_short | Undergraduate analysis |
title_sort | undergraduate analysis |
topic | Mathematical analysis Infinitesimalrechnung (DE-588)4072798-1 gnd Algebra (DE-588)4001156-2 gnd Katze (DE-588)4030046-8 gnd Analysis (DE-588)4001865-9 gnd |
topic_facet | Mathematical analysis Infinitesimalrechnung Algebra Katze Analysis Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007536415&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT langserge undergraduateanalysis |