Minimax and applications:
Classical minimax theory due to Von Neumann, together with duality and saddle point analysis, has played a critical role in optimization and game theory. Today we recognize that minimax problems and techniques appear in a broad spectrum of disciplines including game theory, optimization, and computa...
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Dordrecht [u.a.]
Kluwer
1995
|
Schriftenreihe: | Nonconvex optimization and its applications
4 |
Schlagworte: | |
Zusammenfassung: | Classical minimax theory due to Von Neumann, together with duality and saddle point analysis, has played a critical role in optimization and game theory. Today we recognize that minimax problems and techniques appear in a broad spectrum of disciplines including game theory, optimization, and computational complexity. There are many interesting and sophisticated problems formulated as minimax applications such as, in the field of combinatorial optimization, problems of scheduling, location, allocation, packing, searching and triangulation. The contributions in this volume cover a diverse range of topics and provide a good picture of recent research and developments in minimax theory. The material in the book is accessible to graduate students as well as researchers in optimization, computer sciences and related areas. |
Beschreibung: | Serienzählung fälschlicherweise mit vol. 5 angegeben |
Beschreibung: | XIV, 292 S. graph. Darst. |
ISBN: | 0792336151 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV011226671 | ||
003 | DE-604 | ||
005 | 20140925 | ||
007 | t | ||
008 | 970303s1995 d||| |||| 00||| engod | ||
020 | |a 0792336151 |9 0-7923-3615-1 | ||
035 | |a (OCoLC)32697687 | ||
035 | |a (DE-599)BVBBV011226671 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-91G |a DE-703 |a DE-706 |a DE-11 | ||
050 | 0 | |a QA306 | |
082 | 0 | |a 515/.64 |2 20 | |
084 | |a QH 420 |0 (DE-625)141574: |2 rvk | ||
084 | |a SK 870 |0 (DE-625)143265: |2 rvk | ||
084 | |a MAT 910f |2 stub | ||
245 | 1 | 0 | |a Minimax and applications |c ed. by Ding-Zhu Du and Panos M. Pardalos |
264 | 1 | |a Dordrecht [u.a.] |b Kluwer |c 1995 | |
300 | |a XIV, 292 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Nonconvex optimization and its applications |v 4 | |
500 | |a Serienzählung fälschlicherweise mit vol. 5 angegeben | ||
520 | 3 | |a Classical minimax theory due to Von Neumann, together with duality and saddle point analysis, has played a critical role in optimization and game theory. Today we recognize that minimax problems and techniques appear in a broad spectrum of disciplines including game theory, optimization, and computational complexity. There are many interesting and sophisticated problems formulated as minimax applications such as, in the field of combinatorial optimization, problems of scheduling, location, allocation, packing, searching and triangulation. The contributions in this volume cover a diverse range of topics and provide a good picture of recent research and developments in minimax theory. The material in the book is accessible to graduate students as well as researchers in optimization, computer sciences and related areas. | |
650 | 7 | |a Maximums et minimums |2 ram | |
650 | 7 | |a Minimax problemen |2 gtt | |
650 | 7 | |a Optimaliseren |2 gtt | |
650 | 7 | |a Optimisation mathématique |2 ram | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Maxima and minima | |
650 | 0 | 7 | |a Minimum-Maximum-Prinzip |0 (DE-588)4170060-0 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Minimum-Maximum-Prinzip |0 (DE-588)4170060-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Du, Dingzhu |d 1948- |e Sonstige |0 (DE-588)1013682580 |4 oth | |
700 | 1 | |a Pardalos, Panos M. |d 1954- |e Sonstige |0 (DE-588)115385827 |4 oth | |
830 | 0 | |a Nonconvex optimization and its applications |v 4 |w (DE-604)BV010085908 |9 4 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007532846 |
Datensatz im Suchindex
_version_ | 1804125725898309632 |
---|---|
any_adam_object | |
author_GND | (DE-588)1013682580 (DE-588)115385827 |
building | Verbundindex |
bvnumber | BV011226671 |
callnumber-first | Q - Science |
callnumber-label | QA306 |
callnumber-raw | QA306 |
callnumber-search | QA306 |
callnumber-sort | QA 3306 |
callnumber-subject | QA - Mathematics |
classification_rvk | QH 420 SK 870 |
classification_tum | MAT 910f |
ctrlnum | (OCoLC)32697687 (DE-599)BVBBV011226671 |
dewey-full | 515/.64 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.64 |
dewey-search | 515/.64 |
dewey-sort | 3515 264 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02550nam a2200493 cb4500</leader><controlfield tag="001">BV011226671</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140925 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">970303s1995 d||| |||| 00||| engod</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0792336151</subfield><subfield code="9">0-7923-3615-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)32697687</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011226671</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA306</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.64</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 420</subfield><subfield code="0">(DE-625)141574:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 870</subfield><subfield code="0">(DE-625)143265:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 910f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Minimax and applications</subfield><subfield code="c">ed. by Ding-Zhu Du and Panos M. Pardalos</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht [u.a.]</subfield><subfield code="b">Kluwer</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 292 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Nonconvex optimization and its applications</subfield><subfield code="v">4</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Serienzählung fälschlicherweise mit vol. 5 angegeben</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Classical minimax theory due to Von Neumann, together with duality and saddle point analysis, has played a critical role in optimization and game theory. Today we recognize that minimax problems and techniques appear in a broad spectrum of disciplines including game theory, optimization, and computational complexity. There are many interesting and sophisticated problems formulated as minimax applications such as, in the field of combinatorial optimization, problems of scheduling, location, allocation, packing, searching and triangulation. The contributions in this volume cover a diverse range of topics and provide a good picture of recent research and developments in minimax theory. The material in the book is accessible to graduate students as well as researchers in optimization, computer sciences and related areas.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Maximums et minimums</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Minimax problemen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optimaliseren</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optimisation mathématique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maxima and minima</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Minimum-Maximum-Prinzip</subfield><subfield code="0">(DE-588)4170060-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Minimum-Maximum-Prinzip</subfield><subfield code="0">(DE-588)4170060-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Dingzhu</subfield><subfield code="d">1948-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1013682580</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pardalos, Panos M.</subfield><subfield code="d">1954-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)115385827</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Nonconvex optimization and its applications</subfield><subfield code="v">4</subfield><subfield code="w">(DE-604)BV010085908</subfield><subfield code="9">4</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007532846</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV011226671 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:06:08Z |
institution | BVB |
isbn | 0792336151 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007532846 |
oclc_num | 32697687 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-703 DE-706 DE-11 |
owner_facet | DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-703 DE-706 DE-11 |
physical | XIV, 292 S. graph. Darst. |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Kluwer |
record_format | marc |
series | Nonconvex optimization and its applications |
series2 | Nonconvex optimization and its applications |
spelling | Minimax and applications ed. by Ding-Zhu Du and Panos M. Pardalos Dordrecht [u.a.] Kluwer 1995 XIV, 292 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Nonconvex optimization and its applications 4 Serienzählung fälschlicherweise mit vol. 5 angegeben Classical minimax theory due to Von Neumann, together with duality and saddle point analysis, has played a critical role in optimization and game theory. Today we recognize that minimax problems and techniques appear in a broad spectrum of disciplines including game theory, optimization, and computational complexity. There are many interesting and sophisticated problems formulated as minimax applications such as, in the field of combinatorial optimization, problems of scheduling, location, allocation, packing, searching and triangulation. The contributions in this volume cover a diverse range of topics and provide a good picture of recent research and developments in minimax theory. The material in the book is accessible to graduate students as well as researchers in optimization, computer sciences and related areas. Maximums et minimums ram Minimax problemen gtt Optimaliseren gtt Optimisation mathématique ram Mathematical optimization Maxima and minima Minimum-Maximum-Prinzip (DE-588)4170060-0 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Minimum-Maximum-Prinzip (DE-588)4170060-0 s DE-604 Du, Dingzhu 1948- Sonstige (DE-588)1013682580 oth Pardalos, Panos M. 1954- Sonstige (DE-588)115385827 oth Nonconvex optimization and its applications 4 (DE-604)BV010085908 4 |
spellingShingle | Minimax and applications Nonconvex optimization and its applications Maximums et minimums ram Minimax problemen gtt Optimaliseren gtt Optimisation mathématique ram Mathematical optimization Maxima and minima Minimum-Maximum-Prinzip (DE-588)4170060-0 gnd |
subject_GND | (DE-588)4170060-0 (DE-588)4143413-4 |
title | Minimax and applications |
title_auth | Minimax and applications |
title_exact_search | Minimax and applications |
title_full | Minimax and applications ed. by Ding-Zhu Du and Panos M. Pardalos |
title_fullStr | Minimax and applications ed. by Ding-Zhu Du and Panos M. Pardalos |
title_full_unstemmed | Minimax and applications ed. by Ding-Zhu Du and Panos M. Pardalos |
title_short | Minimax and applications |
title_sort | minimax and applications |
topic | Maximums et minimums ram Minimax problemen gtt Optimaliseren gtt Optimisation mathématique ram Mathematical optimization Maxima and minima Minimum-Maximum-Prinzip (DE-588)4170060-0 gnd |
topic_facet | Maximums et minimums Minimax problemen Optimaliseren Optimisation mathématique Mathematical optimization Maxima and minima Minimum-Maximum-Prinzip Aufsatzsammlung |
volume_link | (DE-604)BV010085908 |
work_keys_str_mv | AT dudingzhu minimaxandapplications AT pardalospanosm minimaxandapplications |