Extensional constructs in intensional type theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
London u.a.
Springer
1997
|
Schriftenreihe: | CPHC/BCS distinguished dissertations
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XII, 214 S. |
ISBN: | 3540761217 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV011205501 | ||
003 | DE-604 | ||
005 | 19980318 | ||
007 | t | ||
008 | 970211s1997 gw |||| 00||| ger d | ||
016 | 7 | |a 949178217 |2 DE-101 | |
020 | |a 3540761217 |c Gb. : DM 97.00 |9 3-540-76121-7 | ||
035 | |a (OCoLC)36104250 | ||
035 | |a (DE-599)BVBBV011205501 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-384 |a DE-91G |a DE-634 | ||
050 | 0 | |a QA76.9.A96 | |
082 | 0 | |a 511.3 |2 21 | |
084 | |a SK 130 |0 (DE-625)143216: |2 rvk | ||
084 | |a DAT 373d |2 stub | ||
100 | 1 | |a Hofmann, Martin |e Verfasser |4 aut | |
245 | 1 | 0 | |a Extensional constructs in intensional type theory |c Martin Hofmann |
264 | 1 | |a London u.a. |b Springer |c 1997 | |
300 | |a XII, 214 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a CPHC/BCS distinguished dissertations | |
650 | 4 | |a Automatic theorem proving | |
650 | 4 | |a Functional programming (Computer science) | |
650 | 4 | |a Type theory | |
650 | 0 | 7 | |a Martin-Löf-Typentheorie |0 (DE-588)4347541-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Martin-Löf-Typentheorie |0 (DE-588)4347541-3 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007516124&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-007516124 |
Datensatz im Suchindex
_version_ | 1807505395827081216 |
---|---|
adam_text |
TABLE
OF
CONTENTS
PREFACE
.
V
1.
INTRODUCTION
.
1
1.1
DEFINITIONAL
AND
PROPOSITIONAL
EQUALITY
.
1
1.2
EXTENSIONAL
CONSTRUCTS
.
4
1.3
METHOD
.
5
1.3.1
THE
USE
OF
CATEGORICAL
MODELS
.
6
1.3.2
SYNTACTIC
MODELS
.
6
1.4
APPLICATIONS
.
8
1.4.1
APPLICATION
TO
MACHINE-ASSISTED
THEOREM
PROVING
.
8
1.5
OVERVIEW
.
9
2.
SYNTAX
AND
SEMANTICS
OF
DEPENDENT
TYPES
.
13
2.1
SYNTAX
FOR
A
CORE
CALCULUS
.
13
2.1.1
RAW
SYNTAX
.
14
2.1.2
JUDGEMENTS
.
14
2.1.3
NOTATION
.
17
2.1.4
DERIVED
RULES
AND
META-THEORETIC
PROPERTIES
.
18
2.2
HIGH-LEVEL
SYNTAX
.
19
2.2.1
TELESCOPES
.
19
2.2.2
ELEMENTS
OF
TELESCOPES
AND
CONTEXT
MORPHISMS
.
19
2.2.3
DEFINITIONS
AND
SUBSTITUTION
.
20
2.3
FURTHER
TYPE
FORMERS
.
21
2.3.1
UNIT
TYPE
.
21
2.3.2
27-TYPES
.
22
2.3.3
FUNCTION
AND
CARTESIAN
PRODUCT
TYPES
.
22
2.3.4
THE
CALCULUS
OF
CONSTRUCTIONS
.
22
2.3.5
UNIVERSES
.
23
2.3.6
QUOTIENT
TYPES
.
24
2.4
ABSTRACT
SEMANTICS
OF
TYPE
THEORY
.
24
2.4.1
SYNTACTIC
CATEGORIES
WITH
ATTRIBUTES
.
25
2.4.2
TYPE
CONSTRUCTORS
.
34
2.5
INTERPRETING
THE
SYNTAX
.
45
2.5.1
PARTIAL
INTERPRETATION
.
45
2.5.2
SOUNDNESS
OF
THE
INTERPRETATION
.
46
2.6
DISCUSSION
AND
RELATED
WORK
.
53
3.
SYNTACTIC
PROPERTIES
OF
PROPOSITIONAL
EQUALITY
.
55
3.1
INTENSIONAL
TYPE
THEORY
.
55
3.1.1
SUBSTITUTION
.
55
3.1.2
UNIQUENESS
OF
IDENTITY
.
57
3.1.3
FUNCTIONAL
EXTENSIONALITY
.
59
3.2
EXTENSIONAL
TYPE
THEORY
.
61
3.2.1
COMPARISON
WITH
TROELSTRA
'
S
PRESENTATION
.
62
3.2.2
UNDECIDABILITY
OF
EXTENSIONAL
TYPE
THEORY
.
62
3.2.3
INTERPRETING
EXTENSIONAL
TYPE
THEORY
IN
INTENSIONAL
TYPE
THEORY
.
64
3.2.4
AN
EXTENSION
OF
TT/
FOR
WHICH
THE
INTERPRETATION
IN
TT
E
IS
SURJECTIVE
.
66
3.2.5
CONSERVATIVITY
OF
TT
B
OVER
TT/
.
68
3.2.6
DISCUSSION
AND
EXTENSIONS
.
77
3.2.7
CONSERVATIVITY
OF
QUOTIENT
TYPES
AND
FUNCTIONAL
EXTEN
SIONALITY
.
84
3.3
RELATED
WORK
.
86
4.
PROOF
IRRELEVANCE
AND
SUBSET
TYPES
.
89
4.1
THE
REFINEMENT
APPROACH
.
.89
4.2
THE
DELIVERABLES
APPROACH
.
91
4.3
THE
DELIVERABLES
MODEL
.
'
.
92
4.3.1
CONTEXTS
.
92
4.3.2
FAMILIES
OF
SPECIFICATIONS
.
93
4.3.3
SECTIONS
OF
SPECIFICATIONS
(DELIVERABLES)
.
94
4.4
MODEL
CHECKING
WITH
LEGO
.
94
4.4.1
RECORDS
IN
LEGO
.
95
4.4.2
DELIVERABLES
IN
LEGO
.
95
4.5
TYPE
FORMERS
IN
THE
MODEL
D
.
97
4.5.1
DEPENDENT
PRODUCTS
.
97
4.5.2
DEPENDENT
SUMS
.
98
4.5.3
NATURAL
NUMBERS
.
100
4.5.4
THE
TYPE
OF
PROPOSITIONS
.
100
4.5.5
PROOF
IRRELEVANCE
.
103
4.5.6
UNIVERSES
.
104
4.6
SUBSET
TYPES
.
105
4.6.1
SUBSET
TYPES
WITHOUT
IMPREDICATIVITY
.
106
4.6.2
A
NON-STANDARD
RULE
FOR
SUBSET
TYPES
.
106
4.7
REINTERPRETATION
OF
THE
EQUALITY
JUDGEMENT
.
ILL
4.8
RELATED
WORK
.
112
5.
EXTENSIONALITY
AND
QUOTIENT
TYPES
.
115
5.1
THE
SETOID
MODEL
.
115
5.1.1
CONTEXTS
OF
SETOIDS
.
116
5.1.2
IMPLEMENTING
THE
SETOID
MODEL
SO
IN
LEGO
.
119
5.1.3
TYPE
FORMERS
IN
THE
SETOID
MODEL
.
119
5.1.4
PROPOSITIONS
.
120
5.1.5
QUOTIENT
TYPES
.
125
5.1.6
INTERPRETATION
OF
QUOTIENT
TYPES
IN
SO
.
126
5.1.7
A
CHOICE
OPERATOR
FOR
QUOTIENT
TYPES
.
129
5.1.8
TYPE
DEPENDENCY
AND
UNIVERSES
.
132
5.2
THE
GROUPOID
MODEL
.
135
5.2.1
GROUPOIDS
.
136
5.2.2
INTERPRETATION
OF
TYPE
FORMERS
.
142
5.2.3
UNIQUENESS
OF
IDENTITY
.
146
5.2.4
PROPOSITIONAL
EQUALITY
AS
ISOMORPHISM
.
147
5.3
A
DEPENDENT
SETOID
MODEL
.
148
5.3.1
FAMILIES
OF
SETOIDS
.
150
5.3.2
DEPENDENT
PRODUCT
.
153
5.3.3
THE
IDENTITY
TYPE
.
154
5.3.4
INDUCTIVE
TYPES
.
156
5.3.5
QUOTIENT
TYPES
.
158
5.4
DISCUSSION
AND
RELATED
WORK
.
160
6.
APPLICATIONS
.
163
6.1
TARSKI
'
S
FIXPOINT
THEOREM
.
164
6.1.1
DISCUSSION
.
167
6.2
STREAMS
IN
TYPE
THEORY
.
167
6.3
CATEGORY
THEORY
IN
TYPE
THEORY
.
171
6.3.1
CATEGORIES
IN
SO
.
172
6.3.2
CATEGORIES
IN
SI
.
174
6.3.3
DISCUSSION
.
175
6.4
ENCODING
OF
THE
COPRODUCT
TYPE
.
176
6.4.1
DEVELOPMENT
IN
THE
SETOID
MODELS
.
177
6.5
SOME
BASIC
CONSTRUCTIONS
WITH
QUOTIENT
TYPES
.
178
6.5.1
CANONICAL
FACTORISATION
OF
A
FUNCTION
.
178
6.5.2
SOME
CATEGORICAL
PROPERTIES
OF
SO
.
180
6.5.3
SUBSETS
AND
QUOTIENTS
.
180
6.5.4
SATURATED
SUBSETS
.
181
6.5.5
ITERATED
QUOTIENTS
.
182
6.5.6
QUOTIENTS
AND
PRODUCTS
.
182
6.5.7
QUOTIENTS
AND
FUNCTION
SPACES
.
183
6.6
S
IS
CO-CONTINUOUS
-
INTENSIONALLY
.
184
6.6.1
PARAMETRISED
LIMITS
OF
W-CHAINS
.
184
6.6.2
DEVELOPMENT
IN
TTG
.
186
6.6.3
DEVELOPMENT
IN
TT;
.
186
7.
CONCLUSIONS
AND
FURTHER
WORK
.
189
APPENDIX
A.
LEGO
CONTEXT
APPROXIMATING
SO
.
191
A.L
EXTENSIONALITY
AXIOMS
.
191
A.
2
QUOTIENT
TYPES
.
191
A.
3
FURTHER
AXIOMS
.
192
APPENDIX
B.
SYNTAX
.
193
APPENDIX
C.
A
GLOSSARY
OF
TYPE
THEORIES
.
201
APPENDIX
D.
INDEX
OF
SYMBOLS
.
203
INDEX
.
212 |
any_adam_object | 1 |
author | Hofmann, Martin |
author_facet | Hofmann, Martin |
author_role | aut |
author_sort | Hofmann, Martin |
author_variant | m h mh |
building | Verbundindex |
bvnumber | BV011205501 |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.A96 |
callnumber-search | QA76.9.A96 |
callnumber-sort | QA 276.9 A96 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 130 |
classification_tum | DAT 373d |
ctrlnum | (OCoLC)36104250 (DE-599)BVBBV011205501 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV011205501</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19980318</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">970211s1997 gw |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">949178217</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540761217</subfield><subfield code="c">Gb. : DM 97.00</subfield><subfield code="9">3-540-76121-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)36104250</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011205501</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.9.A96</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 373d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hofmann, Martin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Extensional constructs in intensional type theory</subfield><subfield code="c">Martin Hofmann</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London u.a.</subfield><subfield code="b">Springer</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 214 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">CPHC/BCS distinguished dissertations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automatic theorem proving</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional programming (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Type theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Martin-Löf-Typentheorie</subfield><subfield code="0">(DE-588)4347541-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Martin-Löf-Typentheorie</subfield><subfield code="0">(DE-588)4347541-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007516124&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007516124</subfield></datafield></record></collection> |
id | DE-604.BV011205501 |
illustrated | Not Illustrated |
indexdate | 2024-08-16T01:24:31Z |
institution | BVB |
isbn | 3540761217 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007516124 |
oclc_num | 36104250 |
open_access_boolean | |
owner | DE-384 DE-91G DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-91G DE-BY-TUM DE-634 |
physical | XII, 214 S. |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer |
record_format | marc |
series2 | CPHC/BCS distinguished dissertations |
spelling | Hofmann, Martin Verfasser aut Extensional constructs in intensional type theory Martin Hofmann London u.a. Springer 1997 XII, 214 S. txt rdacontent n rdamedia nc rdacarrier CPHC/BCS distinguished dissertations Automatic theorem proving Functional programming (Computer science) Type theory Martin-Löf-Typentheorie (DE-588)4347541-3 gnd rswk-swf Martin-Löf-Typentheorie (DE-588)4347541-3 s DE-604 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007516124&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Hofmann, Martin Extensional constructs in intensional type theory Automatic theorem proving Functional programming (Computer science) Type theory Martin-Löf-Typentheorie (DE-588)4347541-3 gnd |
subject_GND | (DE-588)4347541-3 |
title | Extensional constructs in intensional type theory |
title_auth | Extensional constructs in intensional type theory |
title_exact_search | Extensional constructs in intensional type theory |
title_full | Extensional constructs in intensional type theory Martin Hofmann |
title_fullStr | Extensional constructs in intensional type theory Martin Hofmann |
title_full_unstemmed | Extensional constructs in intensional type theory Martin Hofmann |
title_short | Extensional constructs in intensional type theory |
title_sort | extensional constructs in intensional type theory |
topic | Automatic theorem proving Functional programming (Computer science) Type theory Martin-Löf-Typentheorie (DE-588)4347541-3 gnd |
topic_facet | Automatic theorem proving Functional programming (Computer science) Type theory Martin-Löf-Typentheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007516124&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT hofmannmartin extensionalconstructsinintensionaltypetheory |