A compendium on nonlinear ordinary differential equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York
Wiley
1997
|
Schriftenreihe: | A Wiley-Interscience Publication
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XI, 918 S. |
ISBN: | 0471531340 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV011151881 | ||
003 | DE-604 | ||
005 | 19970128 | ||
007 | t | ||
008 | 970117s1997 |||| 00||| engod | ||
020 | |a 0471531340 |9 0-471-53134-0 | ||
035 | |a (OCoLC)34282986 | ||
035 | |a (DE-599)BVBBV011151881 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-91G |a DE-703 |a DE-29T |a DE-11 | ||
050 | 0 | |a QA372 | |
082 | 0 | |a 515/.352 |2 20 | |
084 | |a SK 520 |0 (DE-625)143244: |2 rvk | ||
084 | |a MAT 340f |2 stub | ||
100 | 1 | |a Sachdev, P. L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A compendium on nonlinear ordinary differential equations |c P. L. Sachdev |
264 | 1 | |a New York |b Wiley |c 1997 | |
300 | |a XI, 918 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a A Wiley-Interscience Publication | |
650 | 4 | |a Differential equations | |
650 | 0 | 7 | |a Nichtlineare gewöhnliche Differentialgleichung |0 (DE-588)4478411-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare gewöhnliche Differentialgleichung |0 (DE-588)4478411-9 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007475458&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-007475458 |
Datensatz im Suchindex
_version_ | 1804125646654275585 |
---|---|
adam_text | CONTENTS
Preface xi
1 INTRODUCTION 1
1.1 Instructions to the User 2
2 SECOND ORDER EQUATIONS 5
2 1 y + f{y) = 0, f(y) polynomial 5
2.2 y + f(y) = 0, f(y) not polynomial 34
2.3 y + g{x)h{y) = 0 56
2.4 y + f(x, y) = 0, f{x, y) polynomial in y 74
2.5 y + f(x, y) = 0, f(x, y) not polynomial in y 94
2.6 y + f{x, y) = 0, f(x, y) general 101
2.7 y + ay +g(x,y) = 0 112
2.8 y + ky /x + g(x,y)=0 137
2.9 y + f{x)y + g(x,y) = 0 167
2.10 y + kyy + g(x,y)=0 180
2.11 y + f(y)y +g{x,y)=O,f{y) polynomial 190
2.12 y + f(y)y + g(x,y) = 0, f{y) not polynomial 208
2.13 y + f{x,y)y +g{x,y)=0 220
2.14 y + ay 2+g(x,y)y + h(x,y) = 0 236
2.15 y + ky 2/y + g(x,y)y + h{x,y)=0 244
2.16 y + f{y)y 2+g{x,y)y + h{x,y)=0 267
2.17 y + f(x,y)y 2+g(x,y)y + h(x,y) = 0 284
2.18 y + f(y,y )=O,f(y,y ) cubic in y 291
2.19 y +/(i, y,y )=0,/(a:,y,y ) cubic in 1/ 295
2.20 y + f{y )+g(x,y) = 0 297
2.21 y + h{y)f{y )+g(x,y) = O 310
2.22 y + f{y,y ) =0 317
2.23 y + h(x)k(y)f{y )+g(x,y)=O 325
2.24 y + f{x,y,y ) =0 328
2.25 xy + g(x, y, y ) = 0 341
2.26 x2y + 9(x,y,y )=0 348
2.27 (f(x)y ) + g(x,y) = O 358
2.28 f(x)y + g{x,y,y ) = O 364
2.29 yy + G(x, y, y ) = 0 369
2.30 yy + ky 2 + g{x, y, y1) = 0, k 0, g linear in y 375
2.31 yy + ky 2+g(x,y,y ) =0, k 0, g linear in y 383
2.32 yy + ky + g(x, y,y ) = 0, A; a general constant, g linear in y 407
2.33 yy + g(x,y,y )=0 420
2.34 xyy + g(x,y,y ) = 0 423
2.35 x2yy + g(x,y,y )=0 427
2.36 f(x)yy + g(x,y,y ) = 0 432
2 37 f{y)y +g(x,y,y ) = 0, f{y) quadratic 433
2.38 f(y)y + g(x,y,y )=0, f(y) cubic 442
2 39 f(y)y +g(x,y,y ) = 0 446
2.40 h(x)f{y)y +g(x,y,y )=0 461
2.41 f{x,y)y + g(x,y,y )=0 469
2.42 f{y,y )y + g(x,y,y ) = 0 482
2.43 f(x,y,y )y + g(x,y,y ) = 0 486
2.44 f{x, y, y , y ) = 0, / polynomial in y 492
2.45 f{x,y,y ,y ) = 0, / not polynomial in y 506
2.46 y + f(y) = a sin(wx + 6) 511
2.47 y + ay + g(x,y) = a sin(bjx +6) 520
2.48 y + f{y:y )=asin{ujx + 8) 531
2.49 y + g{x, y, y ) = p(x),p periodic 537
2.50 y = f{x,y), /polynomial in yuy2 548
2.51 y = f(x,y),f not polynomial in yi, y2 554
2.52 K(x,yuy2)y l = fi(x,yi,y2) (» = 1,2), /, polynomial in yt 565
2.53 h,(x, 2/1, y2)y i = fi{x,yi,y2) {i = 1,2), ft not polynomial in y, 568
3 THIRD ORDER EQUATIONS 573
3 1 y + f{y) = 0 and y + f{x,y) = 0 573
3.2 y + f(x,y)y +g(x,y)=O 575
3.3 y + f(x,y,y ) =0 590
3.4 y + ay + f(y,y ) =0 595
3.5 y + ayy + f(x,y,y )=O 602
3.6 y + f(x,y,y )y + g{x,y,y )=O 633
3.7 y + f(x, y, y , y ) = 0, / not linear in y 652
3.8 f(x)y + g{x,y,y ,y ) = O 665
3.9 f(x,y)y + g(x,y,y ,y )=O 666
3.10 f(x,y,y ,y )y +g(x,y,y ,y ) =0 680
3.11 f{x, y, y y , y ) = 0, / nonlinear in y 686
3.12 f{x,y,y ,y ,y ) = p{x),p periodic 686
3.13 y = /(y);/i,/2,/3 linear and quadratic in yuy2,yi 688
3.14 y = f(y);fuf2,f3 all quadratic myuy2,y3 696
3.15 y =/(y);/!,/2,/3 homogeneous quadratic in y],y2,y3 711
3.16 y = f(y); fuf2, fs polynomial in yuy2,y3 718
3 17 y = f{y) fuh,h not polynomial in yu y2,y3 721
3.18 y = f(x,y) 731
3.19 y[ = fi(x,ff),yZ = }2{x,y) 735
4 FOURTH ORDER EQUATIONS 739
4.1 yiv + f{x,y,y )=0 739
4.2 yiv + ky + f(x,y,y )=0 742
4.3 yw + ayy + f(x,y,y )=0 749
4.4 yiv + f{x,y,y ,y )=0 754
4.5 y + ayy + f{x,y,y ,y )=O 759
4.6 y v + f(x,y,y ,y ,y ) =0 764
4.7 f(x,y,y ,y ,y )y™+g(x,y,y ,y ,y ) =0 768
4.8 y = f{x,y) 772
4.9 y { = h{x,y),y i = /2(x,y) 775
4.10 y + g,{x, yu y2, y[, y2) = fi(x,yu y2), {i = 1,2); gt linear in y, 789
4.11 y l + gl{x,yl,y2,y i,y 2) = f,{x,yuy2){i = 1,2),g{ not linear in yl 801
4.12 hi{x,yuy2,y 1,y2)y + gl(x,yuy2,y[,y 2) = f,{x,yuy2){i = i,2) 803
5 FIFTH ORDER EQUATIONS 807
5.1 Fifth Order Single Equations 807
5.2 Fifth Order Systems 814
6 SIXTH ORDER EQUATIONS 821
6.1 Sixth and Specific Higher Order Single Equations 821
6.2 Sixth and Specific Higher Order Systems 823
N GENERAL ORDER EQUATIONS 831
N.I General Order Single Equations 831
N.2 Systems of General Order 840
BIBLIOGRAPHY 847
|
any_adam_object | 1 |
author | Sachdev, P. L. |
author_facet | Sachdev, P. L. |
author_role | aut |
author_sort | Sachdev, P. L. |
author_variant | p l s pl pls |
building | Verbundindex |
bvnumber | BV011151881 |
callnumber-first | Q - Science |
callnumber-label | QA372 |
callnumber-raw | QA372 |
callnumber-search | QA372 |
callnumber-sort | QA 3372 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 520 |
classification_tum | MAT 340f |
ctrlnum | (OCoLC)34282986 (DE-599)BVBBV011151881 |
dewey-full | 515/.352 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.352 |
dewey-search | 515/.352 |
dewey-sort | 3515 3352 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01407nam a2200373 c 4500</leader><controlfield tag="001">BV011151881</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19970128 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">970117s1997 |||| 00||| engod</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471531340</subfield><subfield code="9">0-471-53134-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)34282986</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011151881</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA372</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.352</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 520</subfield><subfield code="0">(DE-625)143244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 340f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sachdev, P. L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A compendium on nonlinear ordinary differential equations</subfield><subfield code="c">P. L. Sachdev</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Wiley</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 918 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">A Wiley-Interscience Publication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4478411-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4478411-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007475458&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007475458</subfield></datafield></record></collection> |
id | DE-604.BV011151881 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:04:51Z |
institution | BVB |
isbn | 0471531340 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007475458 |
oclc_num | 34282986 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-703 DE-29T DE-11 |
owner_facet | DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-703 DE-29T DE-11 |
physical | XI, 918 S. |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Wiley |
record_format | marc |
series2 | A Wiley-Interscience Publication |
spelling | Sachdev, P. L. Verfasser aut A compendium on nonlinear ordinary differential equations P. L. Sachdev New York Wiley 1997 XI, 918 S. txt rdacontent n rdamedia nc rdacarrier A Wiley-Interscience Publication Differential equations Nichtlineare gewöhnliche Differentialgleichung (DE-588)4478411-9 gnd rswk-swf Nichtlineare gewöhnliche Differentialgleichung (DE-588)4478411-9 s DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007475458&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Sachdev, P. L. A compendium on nonlinear ordinary differential equations Differential equations Nichtlineare gewöhnliche Differentialgleichung (DE-588)4478411-9 gnd |
subject_GND | (DE-588)4478411-9 |
title | A compendium on nonlinear ordinary differential equations |
title_auth | A compendium on nonlinear ordinary differential equations |
title_exact_search | A compendium on nonlinear ordinary differential equations |
title_full | A compendium on nonlinear ordinary differential equations P. L. Sachdev |
title_fullStr | A compendium on nonlinear ordinary differential equations P. L. Sachdev |
title_full_unstemmed | A compendium on nonlinear ordinary differential equations P. L. Sachdev |
title_short | A compendium on nonlinear ordinary differential equations |
title_sort | a compendium on nonlinear ordinary differential equations |
topic | Differential equations Nichtlineare gewöhnliche Differentialgleichung (DE-588)4478411-9 gnd |
topic_facet | Differential equations Nichtlineare gewöhnliche Differentialgleichung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007475458&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT sachdevpl acompendiumonnonlinearordinarydifferentialequations |