Optimal Gröbner base algorithms for binomial ideals:
Abstract: "Little is known about upper complexity bounds for the normal form algorithms which transform a given polynomial ideal basis into a Gröbner basis. In this paper, we exhibit an optimal, exponential space algorithm for generating the reduced Gröbner basis of binomial ideals. This result...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
München
1996
|
Schriftenreihe: | Technische Universität <München>: TUM-I
9604 |
Schlagworte: | |
Zusammenfassung: | Abstract: "Little is known about upper complexity bounds for the normal form algorithms which transform a given polynomial ideal basis into a Gröbner basis. In this paper, we exhibit an optimal, exponential space algorithm for generating the reduced Gröbner basis of binomial ideals. This result is then applied to derive space optimal decision procedures for the finite enumeration and subword problems for commutative semigroups." |
Beschreibung: | 18 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV011109104 | ||
003 | DE-604 | ||
005 | 20040416 | ||
007 | t | ||
008 | 961202s1996 gw t||| 00||| ger d | ||
016 | 7 | |a 948531177 |2 DE-101 | |
035 | |a (OCoLC)36404486 | ||
035 | |a (DE-599)BVBBV011109104 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-12 |a DE-91G | ||
088 | |a TUM I 9604 | ||
100 | 1 | |a Koppenhagen, Ulla |e Verfasser |4 aut | |
245 | 1 | 0 | |a Optimal Gröbner base algorithms for binomial ideals |c Ulla Koppenhagen ; Ernst W. Mayr |
264 | 1 | |a München |c 1996 | |
300 | |a 18 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Technische Universität <München>: TUM-I |v 9604 | |
520 | 3 | |a Abstract: "Little is known about upper complexity bounds for the normal form algorithms which transform a given polynomial ideal basis into a Gröbner basis. In this paper, we exhibit an optimal, exponential space algorithm for generating the reduced Gröbner basis of binomial ideals. This result is then applied to derive space optimal decision procedures for the finite enumeration and subword problems for commutative semigroups." | |
650 | 4 | |a Gröbner bases | |
650 | 4 | |a Ideals (Algebra) | |
650 | 4 | |a Polynomial rings | |
700 | 1 | |a Mayr, Ernst W. |d 1950- |e Verfasser |0 (DE-588)109817923 |4 aut | |
830 | 0 | |a Technische Universität <München>: TUM-I |v 9604 |w (DE-604)BV006185376 |9 9604 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007443164 |
Datensatz im Suchindex
_version_ | 1804125600501202944 |
---|---|
any_adam_object | |
author | Koppenhagen, Ulla Mayr, Ernst W. 1950- |
author_GND | (DE-588)109817923 |
author_facet | Koppenhagen, Ulla Mayr, Ernst W. 1950- |
author_role | aut aut |
author_sort | Koppenhagen, Ulla |
author_variant | u k uk e w m ew ewm |
building | Verbundindex |
bvnumber | BV011109104 |
ctrlnum | (OCoLC)36404486 (DE-599)BVBBV011109104 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01531nam a2200361 cb4500</leader><controlfield tag="001">BV011109104</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040416 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">961202s1996 gw t||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">948531177</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)36404486</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011109104</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="088" ind1=" " ind2=" "><subfield code="a">TUM I 9604</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Koppenhagen, Ulla</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimal Gröbner base algorithms for binomial ideals</subfield><subfield code="c">Ulla Koppenhagen ; Ernst W. Mayr</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">München</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">18 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Technische Universität <München>: TUM-I</subfield><subfield code="v">9604</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "Little is known about upper complexity bounds for the normal form algorithms which transform a given polynomial ideal basis into a Gröbner basis. In this paper, we exhibit an optimal, exponential space algorithm for generating the reduced Gröbner basis of binomial ideals. This result is then applied to derive space optimal decision procedures for the finite enumeration and subword problems for commutative semigroups."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gröbner bases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ideals (Algebra)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomial rings</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mayr, Ernst W.</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)109817923</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Technische Universität <München>: TUM-I</subfield><subfield code="v">9604</subfield><subfield code="w">(DE-604)BV006185376</subfield><subfield code="9">9604</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007443164</subfield></datafield></record></collection> |
id | DE-604.BV011109104 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:04:08Z |
institution | BVB |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007443164 |
oclc_num | 36404486 |
open_access_boolean | |
owner | DE-12 DE-91G DE-BY-TUM |
owner_facet | DE-12 DE-91G DE-BY-TUM |
physical | 18 S. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
record_format | marc |
series | Technische Universität <München>: TUM-I |
series2 | Technische Universität <München>: TUM-I |
spelling | Koppenhagen, Ulla Verfasser aut Optimal Gröbner base algorithms for binomial ideals Ulla Koppenhagen ; Ernst W. Mayr München 1996 18 S. txt rdacontent n rdamedia nc rdacarrier Technische Universität <München>: TUM-I 9604 Abstract: "Little is known about upper complexity bounds for the normal form algorithms which transform a given polynomial ideal basis into a Gröbner basis. In this paper, we exhibit an optimal, exponential space algorithm for generating the reduced Gröbner basis of binomial ideals. This result is then applied to derive space optimal decision procedures for the finite enumeration and subword problems for commutative semigroups." Gröbner bases Ideals (Algebra) Polynomial rings Mayr, Ernst W. 1950- Verfasser (DE-588)109817923 aut Technische Universität <München>: TUM-I 9604 (DE-604)BV006185376 9604 |
spellingShingle | Koppenhagen, Ulla Mayr, Ernst W. 1950- Optimal Gröbner base algorithms for binomial ideals Technische Universität <München>: TUM-I Gröbner bases Ideals (Algebra) Polynomial rings |
title | Optimal Gröbner base algorithms for binomial ideals |
title_auth | Optimal Gröbner base algorithms for binomial ideals |
title_exact_search | Optimal Gröbner base algorithms for binomial ideals |
title_full | Optimal Gröbner base algorithms for binomial ideals Ulla Koppenhagen ; Ernst W. Mayr |
title_fullStr | Optimal Gröbner base algorithms for binomial ideals Ulla Koppenhagen ; Ernst W. Mayr |
title_full_unstemmed | Optimal Gröbner base algorithms for binomial ideals Ulla Koppenhagen ; Ernst W. Mayr |
title_short | Optimal Gröbner base algorithms for binomial ideals |
title_sort | optimal grobner base algorithms for binomial ideals |
topic | Gröbner bases Ideals (Algebra) Polynomial rings |
topic_facet | Gröbner bases Ideals (Algebra) Polynomial rings |
volume_link | (DE-604)BV006185376 |
work_keys_str_mv | AT koppenhagenulla optimalgrobnerbasealgorithmsforbinomialideals AT mayrernstw optimalgrobnerbasealgorithmsforbinomialideals |