Representation theory: a first course
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Springer
1996
|
Ausgabe: | Corr. 3. printing |
Schriftenreihe: | Graduate texts in mathematics
129 : Readings in mathematics |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XV, 551 S. graph. Darst. |
ISBN: | 0387974954 3540974954 0387975276 3540975276 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV011087621 | ||
003 | DE-604 | ||
005 | 19980121 | ||
007 | t | ||
008 | 961129s1996 xxud||| |||| 00||| eng d | ||
016 | 7 | |a 949260886 |2 DE-101 | |
020 | |a 0387974954 |9 0-387-97495-4 | ||
020 | |a 3540974954 |9 3-540-97495-4 | ||
020 | |a 0387975276 |9 0-387-97527-6 | ||
020 | |a 3540975276 |9 3-540-97527-6 | ||
035 | |a (OCoLC)35115160 | ||
035 | |a (DE-599)BVBBV011087621 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-355 |a DE-739 |a DE-384 |a DE-91 |a DE-521 |a DE-11 |a DE-91G | ||
050 | 0 | |a QA176 | |
082 | 0 | |a 512/.55 |2 20 | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a 27 |2 sdnb | ||
084 | |a MAT 225f |2 stub | ||
084 | |a MAT 173f |2 stub | ||
084 | |a MAT 202f |2 stub | ||
100 | 1 | |a Fulton, William |d 1939- |e Verfasser |0 (DE-588)136272541 |4 aut | |
245 | 1 | 0 | |a Representation theory |b a first course |c William Fulton ; Joe Harris |
250 | |a Corr. 3. printing | ||
264 | 1 | |a New York [u.a.] |b Springer |c 1996 | |
300 | |a XV, 551 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Graduate texts in mathematics |v 129 : Readings in mathematics | |
650 | 4 | |a Lie algebras | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Representations of algebras | |
650 | 4 | |a Representations of groups | |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gruppe |g Mathematik |0 (DE-588)4022379-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |D s |
689 | 0 | 1 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |D s |
689 | 1 | 1 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 2 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 3 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 3 | |5 DE-604 | |
689 | 4 | 0 | |a Gruppe |g Mathematik |0 (DE-588)4022379-6 |D s |
689 | 4 | |8 1\p |5 DE-604 | |
700 | 1 | |a Harris, Joe |d 1951- |e Verfasser |0 (DE-588)112574718 |4 aut | |
830 | 0 | |a Graduate texts in mathematics |v 129 : Readings in mathematics |w (DE-604)BV000000067 |9 129 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007427200&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-007427200 |
Datensatz im Suchindex
_version_ | 1807501852749594624 |
---|---|
adam_text |
CONTENTS
PREFACE
V
USING THIS
BOOK
IX
PART
I:
FINITE
GROUPS
1
1.
REPRESENTATIONS
OF
FINITE
GROUPS
3
§1.1:
DEFINITIONS
3
§1.2:
COMPLETE
REDUCIBILITY;
SCHUR
'
S
LEMMA
5
§1.3:
EXAMPLES:
ABELIAN
GROUPS;
S
3
8
2.
CHARACTERS
12
§2.1:
CHARACTERS
12
§2.2:
THE
FIRST
PROJECTION
FORMULA
AND
ITS
CONSEQUENCES
15
§2.3:
EXAMPLES:
S
4
AND
SI
4
18
§2.4:
MORE
PROJECTION
FORMULAS;
MORE
CONSEQUENCES
21
3.
EXAMPLES;
INDUCED
REPRESENTATIONS;
GROUP
ALGEBRAS;
REAL
REPRESENTATIONS
26
§3.1:
EXAMPLES:
S
5
AND
91
5
26
§3.2:
EXTERIOR
POWERS
OF
THE
STANDARD
REPRESENTATION
OF
S
D
31
§3.3:
INDUCED
REPRESENTATIONS
32
§3.4:
THE
GROUP
ALGEBRA
36
§3.5:
REAL
REPRESENTATIONS
AND
REPRESENTATIONS
OVER
SUBFIELDS
OF
C
39
XII
CONTENTS
4.
REPRESENTATIONS
OF
S
D
:
YOUNG
DIAGRAMS
AND
FROBENIUS
'
S
CHARACTER
FORMULA
44
§4.1:
STATEMENTS
OF
THE
RESULTS
44
§4.2:
IRREDUCIBLE
REPRESENTATIONS
OF
S
D
52
§4.3:
PROOF
OF
FROBENIUS
'
S
FORMULA
54
5.
REPRESENTATIONS
OF
AND
GL
2
(F
4
)
63
§5.1:
REPRESENTATIONS
OF
63
§5.2:
REPRESENTATIONS
OF
GL
2
(F,)
AND
SL
2
(F
4
)
67
6.
WEYL
'
S
CONSTRUCTION
75
§6.1:
SCHUR
FUNCTORS
AND
THEIR
CHARACTERS
75
§6.2:
THE
PROOFS
84
PART
II:
LIE
GROUPS
AND
LIE
ALGEBRAS
89
7.
LIE
GROUPS
93
§7.1:
LIE
GROUPS:
DEFINITIONS
93
§7.2:
EXAMPLES
OF
LIE
GROUPS
95
§7.3:
TWO
CONSTRUCTIONS
101
8.
LIE
ALGEBRAS
AND
LIE
GROUPS
104
§8.1:
LIE
ALGEBRAS:
MOTIVATION
AND
DEFINITION
104
§8.2:
EXAMPLES
OF
LIE
ALGEBRAS
111
§8.3:
THE
EXPONENTIAL
MAP
114
9.
INITIAL
CLASSIFICATION
OF
LIE
ALGEBRAS
121
§9.1:
ROUGH
CLASSIFICATION
OF
LIE
ALGEBRAS
121
§9.2:
ENGEL
'
S
THEOREM
AND
LIE
'
S
THEOREM
125
§9.3:
SEMISIMPLE
LIE
ALGEBRAS
128
§9.4:
SIMPLE
LIE
ALGEBRAS
131
10.
LIE
ALGEBRAS
IN
DIMENSIONS
ONE,
TWO,
AND
THREE
133
§10.1:
DIMENSIONS
ONE
AND
TWO
133
§10.2:
DIMENSION
THREE,
RANK
1
136
§10.3:
DIMENSION
THREE,
RANK
2
139
§10.4:
DIMENSION
THREE,
RANK
3
141
11.
REPRESENTATIONS
OF
SI
2
C
146
§11.1:
THE
IRREDUCIBLE
REPRESENTATIONS
146
§11.2:
A
LITTLE
PLETHYSM
151
§11.3:
A
LITTLE
GEOMETRIC
PLETHYSM
153
CONTENTS
XIII
12.
REPRESENTATIONS
OF
SL
3
C,
PART
I
161
13.
REPRESENTATIONS
OF
SI
3
C,
PART
II:
MAINLY
LOTS
OF
EXAMPLES
175
§13.1:
EXAMPLES
175
§13.2:
DESCRIPTION
OF
THE
IRREDUCIBLE
REPRESENTATIONS
182
§13.3:
A
LITTLE
MORE
PLETHYSM
185
§13.4:
A
LITTLE
MORE
GEOMETRIC
PLETHYSM
189
PART
III:
THE
CLASSICAL
LIE
ALGEBRAS
AND
THEIR
REPRESENTATIONS
195
14.
THE
GENERAL
SET-UP:
ANALYZING
THE
STRUCTURE
AND
REPRESENTATIONS
OF
AN
ARBITRARY
SEMISIMPLE
LIE
ALGEBRA
197
§14.1:
ANALYZING
SIMPLE
LIE
ALGEBRAS
IN
GENERAL
197
§14.2:
ABOUT
THE
KILLING
FORM
206
15.
SL4
CANDSIYYC
211
§15.1:
ANALYZING
SIYYC
211
§15.2:
REPRESENTATIONS
OF
SL
4
C
AND
SIYYC
217
§15.3:
WEYL
'
S
CONSTRUCTION
AND
TENSOR
PRODUCTS
222
§15.4:
SOME
MORE
GEOMETRY
227
§15.5:
REPRESENTATIONS
OF
GLYYC
231
16.
SYMPLECTIC
LIE
ALGEBRAS
238
§16.1:
THE
STRUCTURE
OF
SP
2
YYC
AND
SP
2
YYC
238
§16.2:
REPRESENTATIONS
OF
SP
4
C
244
17.
SP
6
C
AND
SP
2
YYC
253
§17.1:
REPRESENTATIONS
OF
SP
6
C
253
§17.2:
REPRESENTATIONS
OF
SP
2
YYC
IN
GENERAL
259
§17.3:
WEYL
'
S
CONSTRUCTION
FOR
SYMPLECTIC
GROUPS
262
18.
ORTHOGONAL
LIE
ALGEBRAS
267
§18.1:
SO
M
C
AND
SO
M
C
267
§18.2:
REPRESENTATIONS
OF
SO
3
C,
SO
4
C,
AND
SO
5
C
273
19.
SO
6
C,
SO
7
C,
AND
SO
M
C
282
§19.1:
REPRESENTATIONS
OF
SO
6C
282
§19.2:
REPRESENTATIONS
OF
THE
EVEN
ORTHOGONAL
ALGEBRAS
286
§19.3:
REPRESENTATIONS
OF
SO
7
C
292
§19.4:
REPRESENTATIONS
OF
THE
ODD
ORTHOGONAL
ALGEBRAS
294
§19.5:
WEYL
'
S
CONSTRUCTION
FOR
ORTHOGONAL
GROUPS
296
XIV
CONTENTS
20.
SPIN
REPRESENTATIONS
OF
SO
M
C
299
§20.1:
CLIFFORD
ALGEBRAS
AND
SPIN
REPRESENTATIONS
OF
SO
M
C
299
§20.2:
THE
SPIN
GROUPS
SPIN
M
C
AND
SPIN
M
R
307
§20.3:
SPIN
8
C
AND
TRIALITY
312
PART
IV:
LIE
THEORY
317
21.
THE
CLASSIFICATION
OF
COMPLEX
SIMPLE
LIE
ALGEBRAS
319
§21.1:
DYNKIN
DIAGRAMS
ASSOCIATED
TO
SEMISIMPLE
LIE
ALGEBRAS
319
§21.2:
CLASSIFYING
DYNKIN
DIAGRAMS
325
§21.3:
RECOVERING
A
LIE
ALGEBRA
FROM
ITS
DYNKIN
DIAGRAM
330
22.
G
2
AND
OTHER
EXCEPTIONAL
LIE
ALGEBRAS
339
§22.1:
CONSTRUCTION
OF
G
2
FROM
ITS
DYNKIN
DIAGRAM
339
§22.2:
VERIFYING
THAT
G
2
IS
A
LIE
ALGEBRA
346
§22.3:
REPRESENTATIONS
OF
G
2
350
§22.4:
ALGEBRAIC
CONSTRUCTIONS
OF
THE
EXCEPTIONAL
LIE
ALGEBRAS
359
23.
COMPLEX
LIE
GROUPS;
CHARACTERS
366
§23.1:
REPRESENTATIONS
OF
COMPLEX
SIMPLE
GROUPS
366
§23.2:
REPRESENTATION
RINGS
AND
CHARACTERS
375
§23.3:
HOMOGENEOUS
SPACES
382
§23.4:
BRUHAT
DECOMPOSITIONS
395
24.
WEYL
CHARACTER
FORMULA
399
§24.1:
THE
WEYL
CHARACTER
FORMULA
399
§24.2:
APPLICATIONS
TO
CLASSICAL
LIE
ALGEBRAS
AND
GROUPS
403
25.
MORE
CHARACTER
FORMULAS
415
§25.1:
FREUDENTHAL
'
S
MULTIPLICITY
FORMULA
415
§25.2:
PROOF
OF
(WCF);
THE
KOSTANT
MULTIPLICITY
FORMULA
419
§25.3:
TENSOR
PRODUCTS
AND
RESTRICTIONS
TO
SUBGROUPS
424
26.
REAL
LIE
ALGEBRAS
AND
LIE
GROUPS
430
§26.1:
CLASSIFICATION
OF
REAL
SIMPLE
LIE
ALGEBRAS
AND
GROUPS
430
§26.2:
SECOND
PROOF
OF
WEYL
'
S
CHARACTER
FORMULA
440
§26.3:
REAL,
COMPLEX,
AND
QUATERNIONIC
REPRESENTATIONS
444
APPENDICES
451
A.
ON
SYMMETRIC
FUNCTIONS
453
§A.L:
BASIC
SYMMETRIC
POLYNOMIALS
AND
RELATIONS
AMONG
THEM
453
§A.2:
PROOFS
OF
THE
DETERMINANTAL
IDENTITIES
462
§A.3:
OTHER
DETERMINANTAL
IDENTITIES
465
CONTENTS
XV
B.
ON
MULTILINEAR
ALGEBRA
471
§B.L:
TENSOR
PRODUCTS
471
§B.2:
EXTERIOR
AND
SYMMETRIC
POWERS
472
§B.3:
DUALS
AND
CONTRACTIONS
475
C.
ON
SEMISIMPLICITY
478
§C.L:
THE
KILLING
FORM
AND
CARTAN
'
S
CRITERION
478
§C.2:
COMPLETE
REDUCIBILITY
AND
THE
JORDAN
DECOMPOSITION
481
§C.3:
ON
DERIVATIONS
483
D.
CARTAN
SUBALGEBRAS
487
§D.L:
THE
EXISTENCE
OF
CARTAN
SUBALGEBRAS
487
§D.2:
ON
THE
STRUCTURE
OF
SEMISIMPLE
LIE
ALGEBRAS
489
§D.3:
THE
CONJUGACY
OF
CARTAN
SUBALGEBRAS
491
§D.4:
ON
THE
WEYL
GROUP
493
E.
ADO
'
S
AND
LEVI
'
S
THEOREMS
499
§E.L:
LEVI
'
S
THEOREM
499
§E.2:
ADO
'
S
THEOREM
500
F.
INVARIANT
THEORY
FOR
THE
CLASSICAL
GROUPS
504
§F.L:
THE
POLYNOMIAL
INVARIANTS
504
§F.2:
APPLICATIONS
TO
SYMPLECTIC
AND
ORTHOGONAL
GROUPS
511
§F.3:
PROOF
OF
CAPELLI
'
S
IDENTITY
514
HINTS,
ANSWERS,
AND
REFERENCES
516
BIBLIOGRAPHY
536
INDEX
OF
SYMBOLS
543
INDEX
547 |
any_adam_object | 1 |
author | Fulton, William 1939- Harris, Joe 1951- |
author_GND | (DE-588)136272541 (DE-588)112574718 |
author_facet | Fulton, William 1939- Harris, Joe 1951- |
author_role | aut aut |
author_sort | Fulton, William 1939- |
author_variant | w f wf j h jh |
building | Verbundindex |
bvnumber | BV011087621 |
callnumber-first | Q - Science |
callnumber-label | QA176 |
callnumber-raw | QA176 |
callnumber-search | QA176 |
callnumber-sort | QA 3176 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 260 SK 340 |
classification_tum | MAT 225f MAT 173f MAT 202f |
ctrlnum | (OCoLC)35115160 (DE-599)BVBBV011087621 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | Corr. 3. printing |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV011087621</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19980121</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">961129s1996 xxud||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">949260886</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387974954</subfield><subfield code="9">0-387-97495-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540974954</subfield><subfield code="9">3-540-97495-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387975276</subfield><subfield code="9">0-387-97527-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540975276</subfield><subfield code="9">3-540-97527-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)35115160</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011087621</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA176</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">27</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 225f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 173f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 202f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fulton, William</subfield><subfield code="d">1939-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136272541</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Representation theory</subfield><subfield code="b">a first course</subfield><subfield code="c">William Fulton ; Joe Harris</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Corr. 3. printing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 551 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">129 : Readings in mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4022379-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Gruppe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4022379-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Harris, Joe</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)112574718</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">129 : Readings in mathematics</subfield><subfield code="w">(DE-604)BV000000067</subfield><subfield code="9">129</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007427200&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007427200</subfield></datafield></record></collection> |
id | DE-604.BV011087621 |
illustrated | Illustrated |
indexdate | 2024-08-16T00:28:12Z |
institution | BVB |
isbn | 0387974954 3540974954 0387975276 3540975276 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007427200 |
oclc_num | 35115160 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-739 DE-384 DE-91 DE-BY-TUM DE-521 DE-11 DE-91G DE-BY-TUM |
owner_facet | DE-355 DE-BY-UBR DE-739 DE-384 DE-91 DE-BY-TUM DE-521 DE-11 DE-91G DE-BY-TUM |
physical | XV, 551 S. graph. Darst. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Springer |
record_format | marc |
series | Graduate texts in mathematics |
series2 | Graduate texts in mathematics |
spelling | Fulton, William 1939- Verfasser (DE-588)136272541 aut Representation theory a first course William Fulton ; Joe Harris Corr. 3. printing New York [u.a.] Springer 1996 XV, 551 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Graduate texts in mathematics 129 : Readings in mathematics Lie algebras Lie groups Representations of algebras Representations of groups Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Darstellung Mathematik (DE-588)4128289-9 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Gruppe Mathematik (DE-588)4022379-6 gnd rswk-swf Darstellung Mathematik (DE-588)4128289-9 s Lie-Algebra (DE-588)4130355-6 s DE-604 Lie-Gruppe (DE-588)4035695-4 s Darstellungstheorie (DE-588)4148816-7 s Gruppe Mathematik (DE-588)4022379-6 s 1\p DE-604 Harris, Joe 1951- Verfasser (DE-588)112574718 aut Graduate texts in mathematics 129 : Readings in mathematics (DE-604)BV000000067 129 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007427200&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Fulton, William 1939- Harris, Joe 1951- Representation theory a first course Graduate texts in mathematics Lie algebras Lie groups Representations of algebras Representations of groups Lie-Gruppe (DE-588)4035695-4 gnd Darstellung Mathematik (DE-588)4128289-9 gnd Darstellungstheorie (DE-588)4148816-7 gnd Lie-Algebra (DE-588)4130355-6 gnd Gruppe Mathematik (DE-588)4022379-6 gnd |
subject_GND | (DE-588)4035695-4 (DE-588)4128289-9 (DE-588)4148816-7 (DE-588)4130355-6 (DE-588)4022379-6 |
title | Representation theory a first course |
title_auth | Representation theory a first course |
title_exact_search | Representation theory a first course |
title_full | Representation theory a first course William Fulton ; Joe Harris |
title_fullStr | Representation theory a first course William Fulton ; Joe Harris |
title_full_unstemmed | Representation theory a first course William Fulton ; Joe Harris |
title_short | Representation theory |
title_sort | representation theory a first course |
title_sub | a first course |
topic | Lie algebras Lie groups Representations of algebras Representations of groups Lie-Gruppe (DE-588)4035695-4 gnd Darstellung Mathematik (DE-588)4128289-9 gnd Darstellungstheorie (DE-588)4148816-7 gnd Lie-Algebra (DE-588)4130355-6 gnd Gruppe Mathematik (DE-588)4022379-6 gnd |
topic_facet | Lie algebras Lie groups Representations of algebras Representations of groups Lie-Gruppe Darstellung Mathematik Darstellungstheorie Lie-Algebra Gruppe Mathematik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007427200&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000067 |
work_keys_str_mv | AT fultonwilliam representationtheoryafirstcourse AT harrisjoe representationtheoryafirstcourse |