Asymptotic methods in electromagnetics:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | German English French |
Veröffentlicht: |
Berlin [u.a.]
Springer
1997
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXI, 525 S. graph. Darst. |
ISBN: | 3540615741 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV011081478 | ||
003 | DE-604 | ||
005 | 19980507 | ||
007 | t| | ||
008 | 961118s1997 gw d||| |||| 00||| ger d | ||
016 | 7 | |a 949009903 |2 DE-101 | |
020 | |a 3540615741 |c Pp. : DM 148.00 |9 3-540-61574-1 | ||
035 | |a (OCoLC)722376444 | ||
035 | |a (DE-599)BVBBV011081478 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 1 | |a ger |a eng |h fre | |
044 | |a gw |c DE | ||
049 | |a DE-29T |a DE-703 |a DE-91 |a DE-634 |a DE-11 | ||
050 | 0 | |a QC665.D5 | |
082 | 0 | |a 539.2 |2 21 | |
084 | |a UH 3000 |0 (DE-625)145643: |2 rvk | ||
084 | |a ELT 044f |2 stub | ||
100 | 1 | |a Bouche, Daniel |d 1958- |e Verfasser |0 (DE-588)115496432 |4 aut | |
240 | 1 | 0 | |a Méthodes asymptotiques en électromagnétisme |
245 | 1 | 0 | |a Asymptotic methods in electromagnetics |c Daniel Bouche ; Frédéric Molinet ; Raj Mittra |
264 | 1 | |a Berlin [u.a.] |b Springer |c 1997 | |
300 | |a XXI, 525 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 7 | |a Développements asymptotiques |2 ram | |
650 | 7 | |a Ondes électromagnétiques - Diffraction - Mathématiques |2 ram | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Asymptotic expansions | |
650 | 4 | |a Electromagnetic waves |x Diffraction |x Mathematics | |
650 | 0 | 7 | |a Elektromagnetische Welle |0 (DE-588)4014301-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Beugung |0 (DE-588)4145094-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Asymptotische Methode |0 (DE-588)4287476-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elektromagnetische Welle |0 (DE-588)4014301-6 |D s |
689 | 0 | 1 | |a Asymptotische Methode |0 (DE-588)4287476-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Elektromagnetische Welle |0 (DE-588)4014301-6 |D s |
689 | 1 | 1 | |a Beugung |0 (DE-588)4145094-2 |D s |
689 | 1 | 2 | |a Asymptotische Methode |0 (DE-588)4287476-2 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Molinet, Frédéric |e Verfasser |4 aut | |
700 | 1 | |a Mittra, Raj |e Verfasser |4 aut | |
775 | 0 | 8 | |i Parallele Sprachausgabe |n französisch |a Bouche, Daniel |t Méthodes asymptotiques en électromagnétisme |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007424251&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-007424251 |
Datensatz im Suchindex
_version_ | 1817704531438338048 |
---|---|
adam_text |
CONTENTS
1.
RAY
OPTICS
.
1
1.1
INTRODUCTION
.
1
1.1.1
THE
PRINCIPLE
OF
LOCALIZATION
.
1
1.1.2
DETERMINATION
OF
THE RAYS
AND
GENERALIZATION
OF
FERMAT'S
PRINCIPLE
.
3
1.1.3
THE
LAWS
OF
GEOMETRICAL
OPTICS
.
4
1.1.4
DETERMINATION
OF
THE
DIFFRACTION
COEFFICIENT
.
5
1.1.5
SUMMARY:
THE
GTD
AS
A
RAY
METHOD
.
4
1.2
RAY
TRACING
USING
GENERALIZED
FERMAT'S
PRINCIPLE
.
5
1.2.1
CONDITION
FOR
A
PATH
L
TO
BE
A
RAY
.
5
1.2.2
LAWS
FOR
DIFFRACTED
RAYS
(FIG.6)
.
7
1.2.3
CONCLUSIONS
.
10
1.3
CALCULATION
OF
THE
FIELD
ALONG
A
RAY
.
11
1.3.1
PHASE
PROPAGATION
ALONG
A
RAY
.
11
1.3.2
CONSERVATION
OF
THE
POWER
FLUX
IN
A
TUBE
OF
RAYS
.
13
1.3.3
POLARIZATION
CONSERVATION
.
15
1.3.4
FINAL
FORMULAS
FOR
THE
RAY
COMPUTATION
OF
FIELDS
.
16
1.3.5
SUMMARY
.
36
1.4
CALCULATION
OF
THE
GEOMETRICAL
FACTORS
.
37
1.4.1
EVOLUTION
OF
THE
GEOMETRICAL
PARAMETERS
ALONG
A
RAY
.
37
1.4.2
TRANSFORMATION
OF
THE
GEOMETRICAL
FACTORS
IN
THE
COURSE
OF
INTERACTIONS
OF
THE
RAY
WITH
THE
SURFACE
.
41
1.4.3
CONCLUSIONS
.
46
1.5
CALCULATION
OF
THE
DIFFRACTION
COEFFICIENTS
.
46
1.5.1
REFLECTION
COEFFICIENTS
.
47
1.5.2
DIFFRACTION
BY
AN
EDGE
OR
A
LINE
DISCONTINUITY
.
47
1.5.3
DIFFRACTION
BY
A
TIP
.
54
1.5.4
ATTACHMENT
COEFFICIENTS,
DETACHMENT
COEFFICIENTS,
AND
COEFFICIENTS
OF
CREEPING
RAYS
.
61
1.5.5
CALCULATION
OF
COEFFICIENTS
D
SR
S
.
64
1.5.6
CALCULATION
OF
THE
LAUNCHING
COEFFICIENTS
OF
CREEPING
RAYS
DUE
SOURCE
LOCATED
ON
THE
SURFACE
.
65
1.5.7
COEFFICIENTS
OF
DIFFRACTION
FOR
PROGRESSIVE
WAVES
AND
EDGE
WAVES
.
68
1.5.8
CONCLUSIONS
.
68
1.6
SOME
LIMITATIONS
OF
THE
RAY
METHOD
.
68
1.6.1
THE
JUMPS
AT THE
LIGHT-SHADOW
BOUNDARY
.
69
1.6.2
INFINITE
RESULTS
ON
THE
CAUSTICS
.
71
1.6.3
CALCULATION
OF
THE
FIELD
IN
THE
SHADOW
ZONE
OF
THE
CAUSTIC
.
72
1.6.4
CONCLUSIONS
.
74
1.7
EXAMPLES
.
74
1.7.1
ORDERS
OF
MAGNITUDE
OF
THE
CONTRIBUTIONS
TO
THE
RCS
.
75
1.7.2
CASE
EXAMPLES
OF
DIFFRACTION
CALCULATION
.
80
1.8
CONCLUSIONS
.
87
REFERENCES
.
88
2.
SEARCH
FOR
SOLUTIONS
IN
THE
FORM
OF
ASYMPTOTIC
EXPANSIONS
.
91
2.1
PERTURBATION
METHODS
AS
APPLIED
TO
DIFFRACTION
PROBLEMS
.
92
2.1.1
BASIC
CONCEPTS
OF
ASYMPTOTIC
EXPANSION
.
92
2.1.2
LUNEBERG-KLINE
SERIES
AND
THE
GEOMETRICAL
OPTICS
.
93
2.1.3
GENERALIZED
LUNEBERG-KLINE
SERIES
AND
DIFFRACTED
RAYS
.
94
2.1.4
BOUNDARY
LAYER
METHOD
.
97
2.1.5
UNIFORM
ASYMPTOTIC
SOLUTION
.100
2.2
RAY
FIELDS
.
102
2.2.1
GEOMETRICAL
OPTICS
.
102
2.2.2
DIFFRACTED
FIELD
BY
AN
EDGE
.
115
2.2.3
FIELD
DIFFRACTED
BY
A
LINE
DISCONTINUITY
.
117
2.2.4
DIFFRACTED
FIELD
BY
A
TIP
OR
A
COMER
.
117
2.2.5
FIELD
IN
THE
SHADOW
ZONE
OF
A
SMOOTH
OBJECT
.
117
2.2.6
CONCLUSIONS
.
119
REFERENCES
.
120
3.
THE
BOUNDARY
LAYER
METHOD
.
121
3.1
BOUNDARY
LAYERS
OF
CREEPING
RAYS
ON
A
CYLINDRICAL
SURFACE
(FIG.
3.1)
.
122
3.1.1
CONDITIONS
SATISFIED
BY
U
.
122
3.1.2
CHOICE
OF
THE
FORM
OF
THE
SOLUTION
.
123
3.1.3
WAVE
EQUATION
EXPRESSED
WITH
THE
COORDINATES
(S,
N)
.
125
3.1.4
CALCULATION
OF
WO
126
3.1.5
CALCULATION
OF
A(S)
.
128
3.1.6
EXPRESSION
FOR
THE
COMPATIBILITY
CONDITION
.
129
3.1.7
FINAL
RESULT
FOR
THE
FIRST
TERM
MQ
OF
THE
EXPANSION
OF
U
.
132
3.1.8
FIELDS
EXPRESSED
IN
TERMS
OF
THE
RAY
COORDINATES
(FIG.
3.2)
.
133
3.2
BOUNDARY
LAYERS
OF
CREEPING
RAYS
ON
A
GENERAL
SURFACE
.
134
3.2.1
INTRODUCTION
.
134
3.2.2
EQUATIONS
AND
BOUNDARY
CONDITIONS
.
136
3.2.3
FORM
OF
THE
ASYMPTOTIC
EXPANSION
.
137
3.2.4
DERIVATION
OF
THE
SOLUTION
OF
MAXWELL
'
S
EQUATIONS,
EXPRESSED
IN
THE
COORDINATE
SYSTEM
(S,
A,
N)
.
138
3.2.5
INTERPRETATION
OF
THE
EQUATION
ASSOCIATED
WITH
THE
FIRST
THREE
ORDERS
(K,KYY,K
IN
)
.
141
3.2.6
BOUNDARY
CONDITIONS
AND
THE
DETERMINATION
OF
P
.
144
3.2.7
COMPLETE
DETERMINATION
OF
E
Q
AND
H
Q
.
152
3.2.8
SPECIAL
CASE
OF
THE
SURFACE
IMPEDANCE
GIVEN
BY
Z
=
1
.
158
3.2.9
CONCLUSIONS
.
161
3.3
BOUNDARY
LAYER
OF
THE
WHISPERING
GALLERY
MODES
.
163
3.4
NEIGHBORHOOD
OF
A
REGULAR
POINT
OF
A
CAUSTIC
(FIG.
3.11)
.
165
3.5
NEIGHBORHOOD
OF
THE
LIGHT-SHADOW
BOUNDARY
.
168
3.6
BOUNDARY
LAYER
IN
THE
NEIGHBORHOOD
OF
AN EDGE
OF
CURVED
WEDGE
(FIG.
3.13)
.
172
3.7
NEIGHBORHOOD
OF
THE
CONTACT
POINT
OF
A
CREEPING
RAY
ON
A
SMOOTH
SURFACE
.
174
3.8
CALCULATION
OF
THE
FIELD
IN
THE
NEIGHBORHOOD
OF
A POINT
OF
THE
SHADOW
BOUNDARY
.
179
3.8.1
CALCULATION
OF
THE
FIELDS
IN
THE
VICINITY
OF
THE
SURFACE
.
179
3.8.2
SURFACE
FIELD
.
182
3.9
WHISPERING
GALLERY
MODES
INCIDENTS
UPON
AN
INFLECTION
POINT
(FIG.3.16)
.
184
3.10
MATCHING
PRINCIPLE
.
186
3.11
MATCHING
THE
SOLUTION
EXPRESSED
IN
THE
FORM
OF
A
CREEPING
RAY
AT
THE
CONTACT
POINT
.
187
3.12
MATCHING
OF
THE
SOLUTION
IN
THE
BOUNDARY
LAYER
IN
THE
VICINITY
OF
SURFACE
TO
THE
SOLUTION
IN
THE
FORM
OF
CREEPING
RAYS
AND
DETERMINATION
OF
THE
SOLUTION
IN
THE
SHADOW
ZONE
.
189
3.13
MATCHING
OF
THE
BOUNDARY
LAYER
IN
THE
NEIGHBORHOOD
OF
THE
EDGE
OF
A
WEDGE
.
194
3.14
THE
CASE
OF
CAUSTICS
.
195
3.15
MATCHING
IN
THE
NEIGHBORHOOD
OF
THE
CONTACT
POINT
(FIG.
3.17)
.
198
REFERENCES
.
206
4.
SPECTRAL
THEORY
OF
DIFFRACTION
.
209
4.1
INTRODUCTION
.
209
4.2
THE
PLANE
WAVE
SPECTRUM
(PWS)
.
210
4.2.1
HOMOGENEOUS
AND
INHOMOGENEOUS
PLANE
WAVES
.
210
4.2.2
SUPERPOSITION
OF
PLANE
WAVES
.
212
4.2.3
PLANE
WAVE
SPECTRUM
AND
FOURIER
TRANSFORMATION
.
213
4.2.4
CHOICE
OF
THE
CONTOUR
OF
INTEGRATION
.215
4.3
EXAMPLES
OF
PLANE
WAVE
SPECTRAL
REPRESENTATION
.
217
4.3.1
SURFACE
WAVES
.
217
4.3.2
LINE
CURRENT
.
219
4.3.3
ARBITRARY
CURRENT
SOURCE
.
219
4.3.4
FIELD
DIFFRACTED
BY
A
PERFECTLY
CONDUCTING
HALF-PLANE
.
221
4.3.5
FOCK
FIELD
(FIG.
4.7)
.
222
4.3.6
OTHER
EXAMPLES
.
224
4.4
DIFFRACTION
OF
COMPLEX
FIELDS
DIFFRACTION
-
CASE
EXAMPLES
.
224
4.4.1
DIFFRACTION
OF
SURFACE
WAVES
.
224
4.4.2
SURFACE
WAVE
EXCITATION
BY
A
LINE
SOURCE
OVER
A
PERFECTLY
CONDUCTING
PLANE
.
226
4.4.3
DIFFRACTION
BY
TWO
HALF-PLANES
(FIG.
4.10)
.
228
4.4.4
GRAZING-INCIDENCE
DIFFRACTION
BY
A
WEDGE
WITH
CURVED
FACES
.
229
REFERENCES
.
231
5.
UNIFORM
SOLUTIONS
.
233
5.1
DEFINITION
AND
PROPERTIES
OF
A
UNIFORM
ASYMPTOTIC
EXPANSION
.
233
5.2
GENERALITIES
ON
THE
RESEARCH
METHODS
OF
A
UNIFORM
SOLUTION
.
235
5.3
UNIFORM
SOLUTIONS
THROUGH
THE
SHADOW
BOUNDARIES
OF
THE
DIRECT
FIELD
AND HE
FIELD
REFLECTED
BY
A
WEDGE
.
241
5.3.1
UNIFORM
ASYMPTOTIC
SOLUTIONS
OF
A
PERFECTLY
CONDUCTING
WEDGE
WITH
PLANAR
FACES
.245
5.3.2
UNIFORM
ASYMPTOTIC
SOLUTIONS
FOR
A
PERFECTLY
CONDUCTING
WEDGE
WITH
CURVED
FACES
.
266
5.3.3
SOLUTION
BASED
ON
SPECTRAL
THEORY
OF
DIFFRACTION
(STD)
.
275
5.3.4
COMPARISON
BETWEEN
UTD,
UAT
AND
STD
SOLUTIONS
.
276
5.4
UAT
SOLUTION
FOR
A LINE
DISCONTINUITY
IN
THE
CURVATURE
.
277
5.4.1
STATEMENT
OF
THE
PROBLEM
AND
DETAILS
OF
RESOLUTION
.
277
5.4.2
EXPRESSION
OF
THE
UNIFORM
SOLUTION
.
301
5.4.3
NUMERICAL
APPLICATION
.
303
5.5
UNIFORM
SOLUTION
THROUGH
THE
SHADOW
BOUNDARY
AND
THE
BOUNDARY
LAYER
OF
A
REGULAR
CONVEX
SURFACE
.
305
5.5.1
UNIFORM
ASYMPTOTIC
SOLUTION
THROUGH
THE
SHADOW
BOUNDARY
OF
AN
IMPERFECTLY
CONDUCTING
SURFACE
-
TWO-DIMENSIONAL
CASE
.
306
5.5.2
UNIFORM
ASYMPTOTIC
EXPANSION
THROUGH
THE
SHADOW
BOUNDARY
OF
AN
IMPERFECTLY
CONDUCTING
SURFACE
-
THREE-DIMENSIONAL
CASE
.
314
5.5.3
TOTALLY
UNIFORM
ASYMPTOTIC
SOLUTION
.
317
5.6
PARTIALLY
AND
TOTALLY-UNIFORM
SOLUTIONS
FOR
A
WEDGE
WITH
CURVED
FACES,
INCLUDING
CREEPING
RAYS
.
326
5.6.1
CLASSIFICATION
OF
ASYMPTOTIC
SOLUTIONS
FOR
A
WEDGE
WITH
CURVED
FACES
.
326
5.6.2
SOLUTION
WHICH
IS
VALID
CLOSE
TO
THE
GRAZING
INCIDENCE:
MICHAELI
'
S
APPROACH
(2-D
CASE)
.
328
5.6.3
UNIFORM
ASYMPTOTIC
SOLUTION-MICHAELI
'
S
APPROACH
(2-D
CASE)
.
337
5.6.4
UNIFORM
ASYMPTOTIC
SOLUTION:
LIANG,
CHUANG
AND
PATHAK
APPROACH
(2-D
CASE)
.
354
5.7
UNIFORM
SOLUTIONS
FOR THE
SAUSTICS
.
362
REFERENCES
.
368
SECTIONS
5.1
AND
5.2
.368
SECTION
5.3
.368
SECTION
5.4
.
370
SECTION
5.5
.
370
SECTION
5.6
.
371
SECTION
5.7
.
373
6.
INTEGRAL
METHODS
.
375
6.1
THE
MASLOV
METHOD
.
376
6.1.1
PRELIMINARY
CONCEPTS
.
377
6.1.2
REPRESENTATION
BY
MEANS
OF
A
SIMPLE
INTEGRAL
.
384
6.1.3
REPRESENTATION
BY
MEANS
OF
A DOUBLE
INTEGRAL
.
391
6.1.4
METHOD
OF
SPECTRAL
RECONSTRUCTION
.
393
6.1.5
AN
ALTERNATE
APPROACH
TO
HANDLING
THE
CAUSTIC
PROBLEM
IN
THE
CONTEXT
OF
THE
MASLOV
METHOD
.396
6.1.6
EXTENSION
TO
MAXWELL
'
S
EQUATIONS
.
397
6.1.7
LIMITATION
OF
MASLOV
'
S
METHOD
.399
6.2
INTEGRATION
ON
A
WAVEFRONT
.
400
6.2.1
GEOMETRY
OF
THE
SURFACE
OF
THE
CENTERS
OF
WAVEFRONT
.
400
6.2.2
FIELD
COMPUTATION
ON
THE
CAUSTIC
C
.
405
6.2.3
CONCLUSIONS
.
412
REFERENCES
.
414
7.
SURFACE
FIELD
AND
PHYSICAL
THEORY
OF
DIFFRACTION
.
415
7.1
UNIFORM
FIELD
.
416
7.1.1
LIT
ZONE
.
417
7.1.2
TRANSITION
ZONE
-
LIT
REGION
.417
7.1.3
TRANSITION
ZONE
-
SHADOW
REGION
.
418
7.1.4
DEEP
SHADOW
ZONE
.
420
7.2
FRINGE
FIELD
.
421
7.3
THE
PHYSICAL
THEORY
OF
DIFFRACTION
.
423
7.3.1
FRINGE
WAVE
.423
7.3.2
EQUIVALENT
CURRENT
METHOD
.
423
7.3.3
EQUIVALENT
FRINGE
CURRENTS
.
428
7.3.4
CALCULATION
OF
THE
DIFFRACTED
FIELD
BY
USING
THE
PTD
.
431
7.3.5
PTDANDGTD
.
431
7.4
GENERALIZATIONS
OF
THE
PTD
.
435
7.4.1
EXTENSION
TO
OBJECTS
DESCRIBED
BY
AN
IMPEDANCE
CONDITION
.
435
7.4.2
REMOVAL
OF
THE
SPURIOUS
CONTRIBUTION
DUE
TO
THE
FICTITIOUS
JUMP
DISCONTINUITY
CURRENTS
AT
THE
SHADOW
BOUNDARY
.
436
7.4.3
THE
USE
OF
A
MORE
"REALISTIC"
UNIFORM
CURRENT
.
436
7.4.4
TREATMENT
OF
NONCONVEX
OBJECTS
.
437
7.5
PTD
APPLICATION
EXAMPLES
.
439
7.5.1
THE
STRIP
.
439
7.5.2
DIFFRACTION
BY
A
SHARP-TIPPED
CONE
WITH
AN
IMPEDANCE
SURFACE
.
441
7.6
CONCLUSIONS
.
441
REFERENCES
.
442
8.
CALCULATION
OF
THE
SURFACE
IMPEDANCE,
GENERALIZATION
OF
THE
NOTION
OF
SURFACE
IMPEDANCE
.
445
8.1
MATHEMATICAL
FOUNDATIONS
AND
DETERMINATION
OF
THE
SURFACE
IMPEDANCE
.
445
8.1.1
SURFACE
IMPEDANCE
FOR
LOSSY
MATERIALS
WITH
HIGH
INDEX
.
446
8.1.2
SURFACE
IMPEDANCE
AT
HIGH
FREQUENCIES
.
449
8.1.3
TREATMENT
OF
THE
DIFFRACTION
BY
EDGES
AND
DISCONTINUITIES
.
451
8.1.4
SUMMARY
.
451
8.2
DIRECT
TREATMENT
OF
THE
MATERIAL
.
451
8.2.1
REFLECTED
RAYS
.
451
8.2.2
TRANSITION
ZONE
AND
SHADOW
ZONE
OF
A
SMOOTH
OBSTACLE
.
451
8.2.3
DIFFRACTION
BY
A
WEDGE
COATED
WITH
MATERIAL
COATING
.
453
8.2.4
SUMMARY
OF
THE
PROCEDURE
FOR
THE
DIRECT
TREATMENT
OF
MATERIAL
.
454
8.3
GENERALIZED
SURFACE
IMPEDANCE
.
455
8.4
CONCLUSIONS
.
458
REFERENCES
.
459
APPENDIX
1.
CANONICAL
PROBLEMS
.
461
AL.L
REFLECTION
OF
A
PLANE
WAVE
BY
A
PLANE
.
461
AL.
2
DIFFRACTION
BY
A
CIRCULAR
CYLINDER
WHOSE
SURFACE
IMPEDANCE
IS
CONSTANT
.
462
A
1.2.1
GENERAL
SOLUTION
OF
THE
CYLINDER
PROBLEM
.
462
AL.
3
DIFFRACTION
BY
A WEDGE
.
473
REFERENCES
.
478
APPENDIX!.
DIFFERENTIAL
GEOMETRY
.
481
A2.1
CALCULATION
OF
THE
RAY
LENGTHS
.
481
A2.2
PHASE
OF
THE
INCIDENT
FIELD
EXPRESSED
IN
TERMS
OF
THE
COORDINATES
(S,
RI)
OR
(S,
A,
RI)
.
484
A2.2.1
TWO-DIMENSIONAL
CASE
.
484
A2.2.2
GENERAL
SURFACE
IN
.
485
A2.3
GEODESIC
COORDINATE
SYSTEM
AND
APPLICATIONS
.
487
A2.3.1
THE
GEODESIC
COORDINATES
.
487
A2.3.2
THE
SURFACE
IN
GEODESIC
COORDINATES
.
488
A2.3.3
CALCULATION
OF
THE
METRIC
MATRIX
OF
THE
COORDINATE
SYSTEM
(S,
A,
RI)
.
489
A2.4
COORDINATE
SYSTEM
OF
THE
LINES
OF
CURVATURE
.
491
REFERENCE
.
493
APPENDIX
3.
COMPLEX
RAYS
.
495
A3.1
COMPLEX
SOLUTIONS
OF
THE
EIKONAL
EQUATION,
COMPLEX
RAYS
.
495
A3.2
SOLUTION
OF
THE
TRANSPORT
EQUATIONS
.
497
A3.3
FIELD
CALCULATION
IN
REAL
SPACE
.
497
A3.4
CALCULATION
OF
THE
REFLECTED
FIELD
WITH
THE
METHOD
OF
COMPLEX
RAYS
.
498
A3.5
OTHER
APPLICATIONS
OF
COMPLEX
RAYS
.
500
REFERENCES
.
500
APPENDIX
4.
ASYMPTOTIC
EXPANSION
OF
INTEGRALS
.503
A4.1
EVALUATION
OF
THE
CONTRIBUTIONS
OF
ISOLATED
CRITICAL
POINTS
.
504
A4.
1.1
THE
METHOD
OF
THE
STATIONARY
PHASE
.
504
A4.
1.2
THE
METHOD
OF
STEEPEST
DESCENT
.
506
A4.
1.3
INTEGRATION
BY
PARTS
.
509
A4.
1.4
LIMITATIONS
OF
THE
PREVIOUS
METHODS
.
511
A4.2
COALESCENCE
OF
CRITICAL
POINTS,
UNIFORM
EXPANSIONS
POINTS
.
512
REFERENCE
.
513
APPENDIX
5.
FOCK
FUNCTIONS
.
515
A5.1
UTILIZATION
OF
THE
FOCK
FUNCTIONS
.
515
A5.2
DEFINITION
OF
THE
FOCK
FUNCTIONS
.
516
A5.3
ASYMPTOTIC
BEHAVIORS
OF
AIRY
FUNCTIONS
.
516
A5.4
BEHAVIOR
OF
THE
FOCK
FUNCTIONS
FOR
LARGE
POSITIVE
X
.
517
A5.5
BEHAVIOR
OF
THE
FOCK
FUNCTIONS
FOR
LARGE
X
0
.
520
A5.6
BEHAVIOR
OF
THE
NICHOLSON
FUNCTIONS
FOR
X
=
0
.
520
A5.7
CONCLUSIONS
.
521
REFERENCE
.
521
APPENDIX
6.
RECIPROCITY
PRINCIPLE
.
523
REFERENCE
.
524
INDEX
.
525 |
any_adam_object | 1 |
author | Bouche, Daniel 1958- Molinet, Frédéric Mittra, Raj |
author_GND | (DE-588)115496432 |
author_facet | Bouche, Daniel 1958- Molinet, Frédéric Mittra, Raj |
author_role | aut aut aut |
author_sort | Bouche, Daniel 1958- |
author_variant | d b db f m fm r m rm |
building | Verbundindex |
bvnumber | BV011081478 |
callnumber-first | Q - Science |
callnumber-label | QC665 |
callnumber-raw | QC665.D5 |
callnumber-search | QC665.D5 |
callnumber-sort | QC 3665 D5 |
callnumber-subject | QC - Physics |
classification_rvk | UH 3000 |
classification_tum | ELT 044f |
ctrlnum | (OCoLC)722376444 (DE-599)BVBBV011081478 |
dewey-full | 539.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 539 - Modern physics |
dewey-raw | 539.2 |
dewey-search | 539.2 |
dewey-sort | 3539.2 |
dewey-tens | 530 - Physics |
discipline | Physik Elektrotechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV011081478</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19980507</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">961118s1997 gw d||| |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">949009903</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540615741</subfield><subfield code="c">Pp. : DM 148.00</subfield><subfield code="9">3-540-61574-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)722376444</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011081478</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">ger</subfield><subfield code="a">eng</subfield><subfield code="h">fre</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC665.D5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">539.2</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 3000</subfield><subfield code="0">(DE-625)145643:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 044f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bouche, Daniel</subfield><subfield code="d">1958-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115496432</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Méthodes asymptotiques en électromagnétisme</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotic methods in electromagnetics</subfield><subfield code="c">Daniel Bouche ; Frédéric Molinet ; Raj Mittra</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 525 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Développements asymptotiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ondes électromagnétiques - Diffraction - Mathématiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotic expansions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetic waves</subfield><subfield code="x">Diffraction</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektromagnetische Welle</subfield><subfield code="0">(DE-588)4014301-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beugung</subfield><subfield code="0">(DE-588)4145094-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotische Methode</subfield><subfield code="0">(DE-588)4287476-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elektromagnetische Welle</subfield><subfield code="0">(DE-588)4014301-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Asymptotische Methode</subfield><subfield code="0">(DE-588)4287476-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Elektromagnetische Welle</subfield><subfield code="0">(DE-588)4014301-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Beugung</subfield><subfield code="0">(DE-588)4145094-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Asymptotische Methode</subfield><subfield code="0">(DE-588)4287476-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Molinet, Frédéric</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mittra, Raj</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="775" ind1="0" ind2="8"><subfield code="i">Parallele Sprachausgabe</subfield><subfield code="n">französisch</subfield><subfield code="a">Bouche, Daniel</subfield><subfield code="t">Méthodes asymptotiques en électromagnétisme</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007424251&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007424251</subfield></datafield></record></collection> |
id | DE-604.BV011081478 |
illustrated | Illustrated |
indexdate | 2024-12-06T15:15:25Z |
institution | BVB |
isbn | 3540615741 |
language | German English French |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007424251 |
oclc_num | 722376444 |
open_access_boolean | |
owner | DE-29T DE-703 DE-91 DE-BY-TUM DE-634 DE-11 |
owner_facet | DE-29T DE-703 DE-91 DE-BY-TUM DE-634 DE-11 |
physical | XXI, 525 S. graph. Darst. |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer |
record_format | marc |
spelling | Bouche, Daniel 1958- Verfasser (DE-588)115496432 aut Méthodes asymptotiques en électromagnétisme Asymptotic methods in electromagnetics Daniel Bouche ; Frédéric Molinet ; Raj Mittra Berlin [u.a.] Springer 1997 XXI, 525 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Développements asymptotiques ram Ondes électromagnétiques - Diffraction - Mathématiques ram Mathematik Asymptotic expansions Electromagnetic waves Diffraction Mathematics Elektromagnetische Welle (DE-588)4014301-6 gnd rswk-swf Beugung (DE-588)4145094-2 gnd rswk-swf Asymptotische Methode (DE-588)4287476-2 gnd rswk-swf Elektromagnetische Welle (DE-588)4014301-6 s Asymptotische Methode (DE-588)4287476-2 s DE-604 Beugung (DE-588)4145094-2 s Molinet, Frédéric Verfasser aut Mittra, Raj Verfasser aut Parallele Sprachausgabe französisch Bouche, Daniel Méthodes asymptotiques en électromagnétisme DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007424251&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bouche, Daniel 1958- Molinet, Frédéric Mittra, Raj Asymptotic methods in electromagnetics Développements asymptotiques ram Ondes électromagnétiques - Diffraction - Mathématiques ram Mathematik Asymptotic expansions Electromagnetic waves Diffraction Mathematics Elektromagnetische Welle (DE-588)4014301-6 gnd Beugung (DE-588)4145094-2 gnd Asymptotische Methode (DE-588)4287476-2 gnd |
subject_GND | (DE-588)4014301-6 (DE-588)4145094-2 (DE-588)4287476-2 |
title | Asymptotic methods in electromagnetics |
title_alt | Méthodes asymptotiques en électromagnétisme |
title_auth | Asymptotic methods in electromagnetics |
title_exact_search | Asymptotic methods in electromagnetics |
title_full | Asymptotic methods in electromagnetics Daniel Bouche ; Frédéric Molinet ; Raj Mittra |
title_fullStr | Asymptotic methods in electromagnetics Daniel Bouche ; Frédéric Molinet ; Raj Mittra |
title_full_unstemmed | Asymptotic methods in electromagnetics Daniel Bouche ; Frédéric Molinet ; Raj Mittra |
title_short | Asymptotic methods in electromagnetics |
title_sort | asymptotic methods in electromagnetics |
topic | Développements asymptotiques ram Ondes électromagnétiques - Diffraction - Mathématiques ram Mathematik Asymptotic expansions Electromagnetic waves Diffraction Mathematics Elektromagnetische Welle (DE-588)4014301-6 gnd Beugung (DE-588)4145094-2 gnd Asymptotische Methode (DE-588)4287476-2 gnd |
topic_facet | Développements asymptotiques Ondes électromagnétiques - Diffraction - Mathématiques Mathematik Asymptotic expansions Electromagnetic waves Diffraction Mathematics Elektromagnetische Welle Beugung Asymptotische Methode |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007424251&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bouchedaniel methodesasymptotiquesenelectromagnetisme AT molinetfrederic methodesasymptotiquesenelectromagnetisme AT mittraraj methodesasymptotiquesenelectromagnetisme AT bouchedaniel asymptoticmethodsinelectromagnetics AT molinetfrederic asymptoticmethodsinelectromagnetics AT mittraraj asymptoticmethodsinelectromagnetics |