Two-sorted metric temporal logics:
Abstract: "Temporal logic has been successfully used for modeling and analyzing the behavior of reactive and concurrent systems. Standard temporal logic is inadequate for real-time applications because it only deals with qualitative timing properties. This is overcome by metric temporal logics...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1995
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS
95,77 |
Schlagworte: | |
Zusammenfassung: | Abstract: "Temporal logic has been successfully used for modeling and analyzing the behavior of reactive and concurrent systems. Standard temporal logic is inadequate for real-time applications because it only deals with qualitative timing properties. This is overcome by metric temporal logics which offer a uniform logical framework in which both qualitative and quantitative timing properties can be expressed by making use of a parameterized operator of relative temporal realization. In this paper we deal with completeness issues for basic systems of metric temporal logic -- despite their relevance, such issues have been ignored or only partially addressed in the literature. We view metric temporal logics as two-sorted formalisms having formulae ranging over time instants and parameters ranging over an (ordered) abelian group of temporal displacements. We first provide an axiomatization of the pure metric fragment of the logic, and prove its soundness and completeness. Then, we show how to obtain the metric temporal logic of linear orders by adding an ordering over displacements. Finally, we consider general metric temporal logics allowing quantification over algebraic variables and free mixing of algebraic formulae and temporal propositional symbols." |
Beschreibung: | 27 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV011064606 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 961118s1995 |||| 00||| engod | ||
035 | |a (OCoLC)35190134 | ||
035 | |a (DE-599)BVBBV011064606 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
100 | 1 | |a Montanari, Angelo |e Verfasser |4 aut | |
245 | 1 | 0 | |a Two-sorted metric temporal logics |c A. Montanari ; M. de Rijke |
264 | 1 | |a Amsterdam |c 1995 | |
300 | |a 27 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS |v 95,77 | |
520 | 3 | |a Abstract: "Temporal logic has been successfully used for modeling and analyzing the behavior of reactive and concurrent systems. Standard temporal logic is inadequate for real-time applications because it only deals with qualitative timing properties. This is overcome by metric temporal logics which offer a uniform logical framework in which both qualitative and quantitative timing properties can be expressed by making use of a parameterized operator of relative temporal realization. In this paper we deal with completeness issues for basic systems of metric temporal logic -- despite their relevance, such issues have been ignored or only partially addressed in the literature. We view metric temporal logics as two-sorted formalisms having formulae ranging over time instants and parameters ranging over an (ordered) abelian group of temporal displacements. We first provide an axiomatization of the pure metric fragment of the logic, and prove its soundness and completeness. Then, we show how to obtain the metric temporal logic of linear orders by adding an ordering over displacements. Finally, we consider general metric temporal logics allowing quantification over algebraic variables and free mixing of algebraic formulae and temporal propositional symbols." | |
650 | 4 | |a Formal languages | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a Real-time data processing | |
650 | 4 | |a Time | |
700 | 1 | |a Rijke, Maarten de |e Verfasser |4 aut | |
810 | 2 | |a Department of Computer Science: Report CS |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 95,77 |w (DE-604)BV008928356 |9 95,77 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007410537 |
Datensatz im Suchindex
_version_ | 1804125553644535808 |
---|---|
any_adam_object | |
author | Montanari, Angelo Rijke, Maarten de |
author_facet | Montanari, Angelo Rijke, Maarten de |
author_role | aut aut |
author_sort | Montanari, Angelo |
author_variant | a m am m d r md mdr |
building | Verbundindex |
bvnumber | BV011064606 |
ctrlnum | (OCoLC)35190134 (DE-599)BVBBV011064606 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02361nam a2200325 cb4500</leader><controlfield tag="001">BV011064606</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">961118s1995 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)35190134</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011064606</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Montanari, Angelo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Two-sorted metric temporal logics</subfield><subfield code="c">A. Montanari ; M. de Rijke</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">27 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS</subfield><subfield code="v">95,77</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "Temporal logic has been successfully used for modeling and analyzing the behavior of reactive and concurrent systems. Standard temporal logic is inadequate for real-time applications because it only deals with qualitative timing properties. This is overcome by metric temporal logics which offer a uniform logical framework in which both qualitative and quantitative timing properties can be expressed by making use of a parameterized operator of relative temporal realization. In this paper we deal with completeness issues for basic systems of metric temporal logic -- despite their relevance, such issues have been ignored or only partially addressed in the literature. We view metric temporal logics as two-sorted formalisms having formulae ranging over time instants and parameters ranging over an (ordered) abelian group of temporal displacements. We first provide an axiomatization of the pure metric fragment of the logic, and prove its soundness and completeness. Then, we show how to obtain the metric temporal logic of linear orders by adding an ordering over displacements. Finally, we consider general metric temporal logics allowing quantification over algebraic variables and free mixing of algebraic formulae and temporal propositional symbols."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Formal languages</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real-time data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rijke, Maarten de</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Computer Science: Report CS</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">95,77</subfield><subfield code="w">(DE-604)BV008928356</subfield><subfield code="9">95,77</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007410537</subfield></datafield></record></collection> |
id | DE-604.BV011064606 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:03:24Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007410537 |
oclc_num | 35190134 |
open_access_boolean | |
physical | 27 S. |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS |
spelling | Montanari, Angelo Verfasser aut Two-sorted metric temporal logics A. Montanari ; M. de Rijke Amsterdam 1995 27 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS 95,77 Abstract: "Temporal logic has been successfully used for modeling and analyzing the behavior of reactive and concurrent systems. Standard temporal logic is inadequate for real-time applications because it only deals with qualitative timing properties. This is overcome by metric temporal logics which offer a uniform logical framework in which both qualitative and quantitative timing properties can be expressed by making use of a parameterized operator of relative temporal realization. In this paper we deal with completeness issues for basic systems of metric temporal logic -- despite their relevance, such issues have been ignored or only partially addressed in the literature. We view metric temporal logics as two-sorted formalisms having formulae ranging over time instants and parameters ranging over an (ordered) abelian group of temporal displacements. We first provide an axiomatization of the pure metric fragment of the logic, and prove its soundness and completeness. Then, we show how to obtain the metric temporal logic of linear orders by adding an ordering over displacements. Finally, we consider general metric temporal logics allowing quantification over algebraic variables and free mixing of algebraic formulae and temporal propositional symbols." Formal languages Logic, Symbolic and mathematical Real-time data processing Time Rijke, Maarten de Verfasser aut Department of Computer Science: Report CS Centrum voor Wiskunde en Informatica <Amsterdam> 95,77 (DE-604)BV008928356 95,77 |
spellingShingle | Montanari, Angelo Rijke, Maarten de Two-sorted metric temporal logics Formal languages Logic, Symbolic and mathematical Real-time data processing Time |
title | Two-sorted metric temporal logics |
title_auth | Two-sorted metric temporal logics |
title_exact_search | Two-sorted metric temporal logics |
title_full | Two-sorted metric temporal logics A. Montanari ; M. de Rijke |
title_fullStr | Two-sorted metric temporal logics A. Montanari ; M. de Rijke |
title_full_unstemmed | Two-sorted metric temporal logics A. Montanari ; M. de Rijke |
title_short | Two-sorted metric temporal logics |
title_sort | two sorted metric temporal logics |
topic | Formal languages Logic, Symbolic and mathematical Real-time data processing Time |
topic_facet | Formal languages Logic, Symbolic and mathematical Real-time data processing Time |
volume_link | (DE-604)BV008928356 |
work_keys_str_mv | AT montanariangelo twosortedmetrictemporallogics AT rijkemaartende twosortedmetrictemporallogics |