Raising GA performance by simultaneous tuning of selective pressure and recombination disruptiveness:
Abstract: "In many Genetic Algorithms applications the objective is to find a (near- )optimal solution using a limited amount of computation. Given these requirements it is difficult to find a good balance between exploration and exploitation. Usually such a balance is found by tuning the vario...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1995
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS
95,58 |
Schlagworte: | |
Zusammenfassung: | Abstract: "In many Genetic Algorithms applications the objective is to find a (near- )optimal solution using a limited amount of computation. Given these requirements it is difficult to find a good balance between exploration and exploitation. Usually such a balance is found by tuning the various parameters (like the selective pressure, population size, the mutation- and crossover rate) of the Genetic Algorithm. As an alternative we propose simultaneous tuning of the selective pressure and the disruptiveness of the recombination operators. Our experiments show that the combination of a proper selective pressure and a highly disruptive recombination operator yields superior performance. The reduction mechanism used in a Steady-State GA has a strong influence on the optimal crossover disruptiveness. Using the worst fitness deletion strategy the building blocks present in the current best individuals are always preserved. This releases the crossover operator from the burden to maintain good building blocks and allows us to tune crossover disruptiveness to improve the search for better individuals." |
Beschreibung: | 9 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV011064383 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 961118s1995 |||| 00||| engod | ||
035 | |a (OCoLC)35649313 | ||
035 | |a (DE-599)BVBBV011064383 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
100 | 1 | |a Kemenade, C. H. M. van |e Verfasser |4 aut | |
245 | 1 | 0 | |a Raising GA performance by simultaneous tuning of selective pressure and recombination disruptiveness |c C. H. M. van Kemenade ; J. N. Kok ; A. E. Eiben |
264 | 1 | |a Amsterdam |c 1995 | |
300 | |a 9 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS |v 95,58 | |
520 | 3 | |a Abstract: "In many Genetic Algorithms applications the objective is to find a (near- )optimal solution using a limited amount of computation. Given these requirements it is difficult to find a good balance between exploration and exploitation. Usually such a balance is found by tuning the various parameters (like the selective pressure, population size, the mutation- and crossover rate) of the Genetic Algorithm. As an alternative we propose simultaneous tuning of the selective pressure and the disruptiveness of the recombination operators. Our experiments show that the combination of a proper selective pressure and a highly disruptive recombination operator yields superior performance. The reduction mechanism used in a Steady-State GA has a strong influence on the optimal crossover disruptiveness. Using the worst fitness deletion strategy the building blocks present in the current best individuals are always preserved. This releases the crossover operator from the burden to maintain good building blocks and allows us to tune crossover disruptiveness to improve the search for better individuals." | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Mathematical optimization | |
700 | 1 | |a Kok, Joost N. |e Verfasser |4 aut | |
700 | 1 | |a Eiben, Agoston E. |d 1961- |e Verfasser |0 (DE-588)143480626 |4 aut | |
810 | 2 | |a Department of Computer Science: Report CS |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 95,58 |w (DE-604)BV008928356 |9 95,58 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007410339 |
Datensatz im Suchindex
_version_ | 1804125553357225984 |
---|---|
any_adam_object | |
author | Kemenade, C. H. M. van Kok, Joost N. Eiben, Agoston E. 1961- |
author_GND | (DE-588)143480626 |
author_facet | Kemenade, C. H. M. van Kok, Joost N. Eiben, Agoston E. 1961- |
author_role | aut aut aut |
author_sort | Kemenade, C. H. M. van |
author_variant | c h m v k chmv chmvk j n k jn jnk a e e ae aee |
building | Verbundindex |
bvnumber | BV011064383 |
ctrlnum | (OCoLC)35649313 (DE-599)BVBBV011064383 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02289nam a2200313 cb4500</leader><controlfield tag="001">BV011064383</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">961118s1995 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)35649313</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011064383</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kemenade, C. H. M. van</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Raising GA performance by simultaneous tuning of selective pressure and recombination disruptiveness</subfield><subfield code="c">C. H. M. van Kemenade ; J. N. Kok ; A. E. Eiben</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS</subfield><subfield code="v">95,58</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "In many Genetic Algorithms applications the objective is to find a (near- )optimal solution using a limited amount of computation. Given these requirements it is difficult to find a good balance between exploration and exploitation. Usually such a balance is found by tuning the various parameters (like the selective pressure, population size, the mutation- and crossover rate) of the Genetic Algorithm. As an alternative we propose simultaneous tuning of the selective pressure and the disruptiveness of the recombination operators. Our experiments show that the combination of a proper selective pressure and a highly disruptive recombination operator yields superior performance. The reduction mechanism used in a Steady-State GA has a strong influence on the optimal crossover disruptiveness. Using the worst fitness deletion strategy the building blocks present in the current best individuals are always preserved. This releases the crossover operator from the burden to maintain good building blocks and allows us to tune crossover disruptiveness to improve the search for better individuals."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kok, Joost N.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eiben, Agoston E.</subfield><subfield code="d">1961-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143480626</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Computer Science: Report CS</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">95,58</subfield><subfield code="w">(DE-604)BV008928356</subfield><subfield code="9">95,58</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007410339</subfield></datafield></record></collection> |
id | DE-604.BV011064383 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:03:23Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007410339 |
oclc_num | 35649313 |
open_access_boolean | |
physical | 9 S. |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS |
spelling | Kemenade, C. H. M. van Verfasser aut Raising GA performance by simultaneous tuning of selective pressure and recombination disruptiveness C. H. M. van Kemenade ; J. N. Kok ; A. E. Eiben Amsterdam 1995 9 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS 95,58 Abstract: "In many Genetic Algorithms applications the objective is to find a (near- )optimal solution using a limited amount of computation. Given these requirements it is difficult to find a good balance between exploration and exploitation. Usually such a balance is found by tuning the various parameters (like the selective pressure, population size, the mutation- and crossover rate) of the Genetic Algorithm. As an alternative we propose simultaneous tuning of the selective pressure and the disruptiveness of the recombination operators. Our experiments show that the combination of a proper selective pressure and a highly disruptive recombination operator yields superior performance. The reduction mechanism used in a Steady-State GA has a strong influence on the optimal crossover disruptiveness. Using the worst fitness deletion strategy the building blocks present in the current best individuals are always preserved. This releases the crossover operator from the burden to maintain good building blocks and allows us to tune crossover disruptiveness to improve the search for better individuals." Algorithms Mathematical optimization Kok, Joost N. Verfasser aut Eiben, Agoston E. 1961- Verfasser (DE-588)143480626 aut Department of Computer Science: Report CS Centrum voor Wiskunde en Informatica <Amsterdam> 95,58 (DE-604)BV008928356 95,58 |
spellingShingle | Kemenade, C. H. M. van Kok, Joost N. Eiben, Agoston E. 1961- Raising GA performance by simultaneous tuning of selective pressure and recombination disruptiveness Algorithms Mathematical optimization |
title | Raising GA performance by simultaneous tuning of selective pressure and recombination disruptiveness |
title_auth | Raising GA performance by simultaneous tuning of selective pressure and recombination disruptiveness |
title_exact_search | Raising GA performance by simultaneous tuning of selective pressure and recombination disruptiveness |
title_full | Raising GA performance by simultaneous tuning of selective pressure and recombination disruptiveness C. H. M. van Kemenade ; J. N. Kok ; A. E. Eiben |
title_fullStr | Raising GA performance by simultaneous tuning of selective pressure and recombination disruptiveness C. H. M. van Kemenade ; J. N. Kok ; A. E. Eiben |
title_full_unstemmed | Raising GA performance by simultaneous tuning of selective pressure and recombination disruptiveness C. H. M. van Kemenade ; J. N. Kok ; A. E. Eiben |
title_short | Raising GA performance by simultaneous tuning of selective pressure and recombination disruptiveness |
title_sort | raising ga performance by simultaneous tuning of selective pressure and recombination disruptiveness |
topic | Algorithms Mathematical optimization |
topic_facet | Algorithms Mathematical optimization |
volume_link | (DE-604)BV008928356 |
work_keys_str_mv | AT kemenadechmvan raisinggaperformancebysimultaneoustuningofselectivepressureandrecombinationdisruptiveness AT kokjoostn raisinggaperformancebysimultaneoustuningofselectivepressureandrecombinationdisruptiveness AT eibenagostone raisinggaperformancebysimultaneoustuningofselectivepressureandrecombinationdisruptiveness |